880 research outputs found
A Readout System for the STAR Time Projection Chamber
We describe the readout electronics for the STAR Time Projection Chamber. The
system is made up of 136,608 channels of waveform digitizer, each sampling 512
time samples at 6-12 Mega-samples per second. The noise level is about 1000
electrons, and the dynamic range is 800:1, allowing for good energy loss
() measurement for particles with energy losses up to 40 times minimum
ionizing. The system is functioning well, with more than 99% of the channels
working within specifications.Comment: 22 pages + 8 separate figures; 2 figures are .jpg photos to appear in
Nuclear Instruments and Method
A Bayesian Approach to Calibrating Period-Luminosity Relations of RR Lyrae Stars in the Mid-Infrared
A Bayesian approach to calibrating period-luminosity (PL) relations has
substantial benefits over generic least-squares fits. In particular, the
Bayesian approach takes into account the full prior distribution of the model
parameters, such as the a priori distances, and refits these parameters as part
of the process of settling on the most highly-constrained final fit.
Additionally, the Bayesian approach can naturally ingest data from multiple
wavebands and simultaneously fit the parameters of PL relations for each
waveband in a procedure that constrains the parameter posterior distributions
so as to minimize the scatter of the final fits appropriately in all wavebands.
Here we describe the generalized approach to Bayesian model fitting and then
specialize to a detailed description of applying Bayesian linear model fitting
to the mid-infrared PL relations of RR Lyrae variable stars. For this example
application we quantify the improvement afforded by using a Bayesian model fit.
We also compare distances previously predicted in our example application to
recently published parallax distances measured with the Hubble Space Telescope
and find their agreement to be a vindication of our methodology. Our intent
with this article is to spread awareness of the benefits and applicability of
this Bayesian approach and encourage future PL relation investigations to
consider employing this powerful analysis method.Comment: 6 pages, 1 figure. Accepted for publication in Astrophysics & Space
Science. Following a presentation at the conference The Fundamental Cosmic
Distance Scale: State of the Art and the Gaia Perspective, Naples, May 201
production in PHENIX
Heavy quarkonia production is expected to be sensitive to the formation of a
quark gluon plasma (QGP). The PHENIX experiment has measured
production at ~200 GeV in Au+Au and Cu+Cu collisions, as well
as in reference p+p and d+Au runs. 's were measured both at mid
() and forward () rapidity. In this letter, we present
the A+A preliminary results and compare them to normal cold nuclear matter
expectations derived from PHENIX d+Au and p+p measurements as well as to
theoretical models including various effects (color screening, recombination,
sequential melting...).Comment: 5 pages, 7 figures. To appear in the proceedings of Hot Quarks 2006:
Workshop for Young Scientists on the Physics of Ultrarelativistic
Nucleus-Nucleus Collisions, Villasimius, Italy, 15-20 May 200
Period- and mirror-maps for the quartic K3
We study in detail mirror symmetry for the quartic K3 surface in P3 and the
mirror family obtained by the orbifold construction. As explained by Aspinwall
and Morrison, mirror symmetry for K3 surfaces can be entirely described in
terms of Hodge structures. (1) We give an explicit computation of the Hodge
structures and period maps for these families of K3 surfaces. (2) We identify a
mirror map, i.e. an isomorphism between the complex and symplectic deformation
parameters, and explicit isomorphisms between the Hodge structures at these
points. (3) We show compatibility of our mirror map with the one defined by
Morrison near the point of maximal unipotent monodromy. Our results rely on
earlier work by Narumiyah-Shiga, Dolgachev and Nagura-Sugiyama.Comment: 29 pages, 3 figure
Heavy Quark Photoproduction in Ultra-peripheral Heavy Ion Collisions
Heavy quarks are copiously produced in ultra-peripheral heavy ion collisions.
In the strong electromagnetic fields, c c-bar and b b-bar are produced by
photonuclear and two-photon interactions; hadroproduction can occur in grazing
interactions. We present the total cross sections, quark transverse momentum
and rapidity distributions, as well as the Q Q-bar invariant mass spectra from
the three production channels. We consider AA and pA collisions at the
Relativistic Heavy Ion Collider and Large Hadron Collider. We discuss
techniques for separating the three processes and describe how the AA to pA
production ratios might be measured accurately enough to study nuclear
shadowing.Comment: Minor changes to satisfy referees and typo fixes; 52 pages including
17 figure
Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach
We present an approach to solid-state electronic-structure calculations based
on the finite-element method. In this method, the basis functions are strictly
local, piecewise polynomials. Because the basis is composed of polynomials, the
method is completely general and its convergence can be controlled
systematically. Because the basis functions are strictly local in real space,
the method allows for variable resolution in real space; produces sparse,
structured matrices, enabling the effective use of iterative solution methods;
and is well suited to parallel implementation. The method thus combines the
significant advantages of both real-space-grid and basis-oriented approaches
and so promises to be particularly well suited for large, accurate ab initio
calculations. We develop the theory of our approach in detail, discuss
advantages and disadvantages, and report initial results, including the first
fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc
Measurements of ep → e′π+π-p′ Cross Sections with CLAS at 1.40 GeV \u3c W \u3c 2.0 GeV and 2.0 GeV² \u3c Q² \u3c 5.0 GeV²
This paper reports new exclusive cross sections for ep → e′π+π-p′ using the CLAS detector at Jefferson Laboratory. These results are presented for the first time at photon virtualities 2.0GeV2 2 \u3c 5.0GeV2 in the center-of-mass energy range 1.4 GeV \u3c W \u3c 2.0 GeV, which covers a large part of the nucleon resonance region. Using a model developed for the phenomenological analysis of electroproduction data, we see strong indications that the relative contributions from the resonant cross sections at W \u3c 1.74 GeV increase with Q2. These data considerably extend the kinematic reach of previous measurements. Exclusive ep → e′π+π-p′ cross section measurements are of particular importance for the extraction of resonance electrocouplings in the mass range above 1.6 GeV
Dynamical parton distributions of the nucleon and very small-x physics
Utilizing recent DIS measurements (F_{2,L}) and data on dilepton and
high-E_{T} jet production we determine the dynamical parton distributions of
the nucleon generated radiatively from valence-like positive input
distributions at optimally chosen low resolution scales. These are compared
with `standard' distributions generated from positive input distributions at
some fixed and higher resolution scale. It is shown that up to the next to
leading order NLO(\bar{MS}, DIS) of perturbative QCD considered in this paper,
the uncertainties of the dynamical distributions are, as expected, smaller than
those of their standard counterparts. This holds true in particular in the
presently unexplored extremely small-x region relevant for evaluating ultrahigh
energy cross sections in astrophysical applications. It is noted that our new
dynamical distributions are compatible, within the presently determined
uncertainties, with previously determined dynamical parton distributions.Comment: 21 pages, 2 tables, 16 figures, v2: added Ref.[60], replaced Fig.
- …