733 research outputs found
Stripped elliptical galaxies as probes of ICM physics : III. Deep Chandra observation of NGC 4552 - Measuring the viscosity of the intracluster medium
We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89) which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin `horns' attached to the northern edge of the gas core [machacek05a]. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10Ăthe radius of the remnant core) from the galaxy center. In our two previous papers [roediger15a,roediger15b], we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of ICM viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-ÎČ plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales
Capturing the 3D motion of an infalling galaxy via fluid dynamics
The Fornax Cluster is the nearest galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical "cold front" that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse intracluster medium. We measure the angular pressure variation along the cold front using a very deep (670\,ksec) {\sl Chandra} X-ray observation. We are taking the classical approach -- using stagnation pressure to determine a substructure's speed -- to the next level by not only deriving a general speed but also directionality which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33â and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters
Nucleon-nucleon momentum correlation function for light nuclei
Nucleon-nucleon momentum correlation function have been presented for nuclear
reactions with neutron-rich or proton-rich projectiles using a nuclear
transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model.
The relationship between the binding energy of projectiles and the strength of
proton-neutron correlation function at small relative momentum has been
explored, while proton-proton correlation function shows its sensitivity to the
proton density distribution. Those results show that nucleon-nucleon
correlation function is useful to reflect some features of the neutron- or
proton-halo nuclei and therefore provide a potential tool for the studies of
radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body
Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in
Nucl. Phys.
Gas sloshing regulates and records the evolution of the Fornax Cluster
We present results of a joint Chandra and XMM-Newton analysis of the Fornax Cluster, the nearest galaxy cluster in the southern sky. Signatures of merger-induced gas sloshing can be seen in the X-ray image. We identify four sloshing cold fronts in the intracluster medium, residing at radii of 3 kpc (west), 10 kpc (northeast), 30 kpc (southwest), and 200 kpc (east). Despite spanning over two orders of magnitude in radius, all four cold fronts fall onto the same spiral pattern that wraps around the BCG NGC 1399, likely all initiated by the infall of NGC 1404. The most evident front is to the northeast, 10 kpc from the cluster center, which separates low-entropy high-metallicity gas and high-entropy low-metallicity gas. The metallicity map suggests that gas sloshing, rather than an AGN outburst, is the driving force behind the redistribution of the enriched gas in this cluster. The innermost cold front resides within the radius of the strong cool core. The sloshing timescale within the cooling radius, calculated from the BruntâVĂ€sĂ€lĂ€ frequency, is an order of magnitude shorter than the cooling time. It is plausible that gas sloshing is contributing to the heating of the cool core, provided that gas of different entropies can be mixed effectively via KelvinâHelmholtz instability. The estimated age of the outermost front suggests that this is not the first infall of NGC 1404
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
Defects and glassy dynamics in solid He-4: Perspectives and current status
We review the anomalous behavior of solid He-4 at low temperatures with
particular attention to the role of structural defects present in solid. The
discussion centers around the possible role of two level systems and structural
glassy components for inducing the observed anomalies. We propose that the
origin of glassy behavior is due to the dynamics of defects like dislocations
formed in He-4. Within the developed framework of glassy components in a solid,
we give a summary of the results and predictions for the effects that cover the
mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of
the glassy response of solid He-4. Our proposed glass model for solid He-4 has
several implications: (1) The anomalous properties of He-4 can be accounted for
by allowing defects to freeze out at lowest temperatures. The dynamics of solid
He-4 is governed by glasslike (glassy) relaxation processes and the
distribution of relaxation times varies significantly between different
torsional oscillator, shear modulus, and dielectric function experiments. (2)
Any defect freeze-out will be accompanied by thermodynamic signatures
consistent with entropy contributions from defects. It follows that such
entropy contribution is much smaller than the required superfluid fraction, yet
it is sufficient to account for excess entropy at lowest temperatures. (3) We
predict a Cole-Cole type relation between the real and imaginary part of the
response functions for rotational and planar shear that is occurring due to the
dynamics of defects. Similar results apply for other response functions. (4)
Using the framework of glassy dynamics, we predict low-frequency yet to be
measured electro-elastic features in defect rich He-4 crystals. These
predictions allow one to directly test the ideas and very presence of glassy
contributions in He-4.Comment: 33 pages, 13 figure
The Kuiper Belt and Other Debris Disks
We discuss the current knowledge of the Solar system, focusing on bodies in
the outer regions, on the information they provide concerning Solar system
formation, and on the possible relationships that may exist between our system
and the debris disks of other stars. Beyond the domains of the Terrestrial and
giant planets, the comets in the Kuiper belt and the Oort cloud preserve some
of our most pristine materials. The Kuiper belt, in particular, is a
collisional dust source and a scientific bridge to the dusty "debris disks"
observed around many nearby main-sequence stars. Study of the Solar system
provides a level of detail that we cannot discern in the distant disks while
observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book
"Astrophysics in the Next Decade
The recent growth history of the Fornax Cluster derived from simultaneous sloshing and gas stripping: Simulating the infall of NGC 1404
We derive the recent growth history of the Fornax Cluster, in particular the recent infall of the giant elliptical galaxy NGC 1404. We show, using a simple cluster minor merger simulation tailored to Fornax and NGC 1404, that a second or more likely third encounter between the two reproduces all the main merger features observed in both objects; we firmly exclude a first infall scenario. Our simulations reveal a consistent picture: NGC 1404 passed by NGC 1399 about 1.1â1.3 Gyr ago from the northeast to the southwest and is now almost at the point of its next encounter from the south. This scenario explains the sloshing patterns observed in Fornaxâa prominent northern cold front and an inner southern cold front. This scenario also explains the truncated atmosphere, the gas-stripping radius of NGC 1404, and its faint gas tail. Independent of the exact history, we can make a number of predictions. A detached bow shock south of NGC 1404 should exist, which is a remnant of the galaxy's previous infall at a distance from NGC 1404 between 450 and 750 kpc with an estimated Mach number between 1.3 and 1.5. The wake of NGC 1404 also lies south of the galaxy with enhanced turbulence and a slight enhancement in metallicity compared to the undisturbed regions of the cluster. Southwest of NGC 1404, there is likely evidence of old turbulence originating from the previous infall. No scenario predicts enhanced turbulence outside of the cold front northwest of the cluster center
Electric current circuits in astrophysics
Cosmic magnetic structures have in common that they are anchored
in a dynamo, that an external driver converts kinetic energy into internal
magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy
is released in the form of particle acceleration, heating, bulk motion,
MHD waves, and radiation. The investigation of the electric current system is
particularly illuminating as to the course of events and the physics involved.
We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial
magnetic storms
Regimen-specific rates of chemotherapy-related amenorrhea in breast cancer survivors
Young women who have not begun or completed their desired childbearing at the time of diagnosis with breast cancer often wish to understand and minimize their risk of chemotherapy-related amenorrhea (CRA). However, the incidence of CRA after regimens that do not include either an anthracycline or a cyclophosphamide is poorly studied. For patients with human epidermal growth factor receptor 2-positive disease, anthracycline- and cyclophosphamide-sparing regimens (eg, carboplatin/taxane) are common (in combination with human epidermal growth factor receptor 2-directed therapy). In this study, accrued in collaboration with Army of Women, menstrual data were analyzed for 151 breast cancer survivors (median age = 41 years at diagnosis, and median time between last chemotherapy and survey = 62.5 months). Last menstrual period was before the last chemotherapy dose in 51% of the 86 participants who received anthracycline/cyclophosphamide/taxane, in 42% of the 43 who received only taxane/cyclophosphamide, and in 13% of the 15 who received carboplatin/taxane. This study suggests that carboplatin/taxane causes less CRA than cyclophosphamide-based regimens
- âŠ