17 research outputs found

    A Statistical Survey of Hard X-ray Spectral Characteristics of Solar Flares with Two Footpoints

    Full text link
    Using RHESSI data, we have analyzed some 172 hard X-ray peaks during 53 solar flares which exhibited a double-footpoint structure. Fitting both footpoints with power-laws, we find that spectral index differences range mostly between 0 to 0.6, and only rarely go beyond. Asymmetries between footpoints were not observed to be significantly dependent on their mean heliographic position, their relative position with respect to each other, nor their orientation with respect to the solar equator. Assuming a symmetric acceleration process, it is also clear that differences in footpoint spectral indices and footpoint flux ratios can seldom be attributed to a difference in column densities between the two legs of a coronal loop. Our results corroborate better the magnetic mirror trap scenario. Moreover, footpoint asymmetries are more marked during times of peak HXR flux than when averaging over the whole HXR burst, suggesting that the magnetic configuration evolves during individual HXR bursts. We observed also a linear correlation between the peak 50-keV flux and the peak GOES 1-8A channel flux, and that HXR burst duration seem correlated with loop length.Comment: 20 pages, 13 figures. Published in Solar Physic

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Radio Emissions from Solar Active Regions

    Full text link

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    PROFIL WISATAWAN MUSEUM RADYA PUSTAKA SURAKARTA

    Get PDF
    Anggit Margaret, C9407031 2011. Profil Wisatawan Museum Radya Pustaka Surakarta. Program Studi Diploma III Usaha Perjalanan Wisata Fakultas Sastra Dan Seni Rupa Universitas Sebelas Maret Surakarta. Penelitian tugas akhir ini mengkaji tentang Profil Wisatawan di Museum Radya Pustaka Surakarta. Tujuan dari penelitian ini adalah untuk mengetahui dari daerah mana saja wisatawan yang berkunjung ke Museum Radya Pustaka, bagaimana ciri-ciri wisatawan yang berkunjung ke Museum Radya Pustaka serta harapan-harapan yang diinginkan wisatawan terhadap Museum Radya Pustaka. Penelitian dilakukan dengan metode kualitatif. Pengumpulan data dilakukan melalui wawancara dengan narasumber wisatawan yang berkujung di Museum Radya Pustaka Surakarta tempat penulis melakukan penelitian, serta studi pustaka dan studi dokumen guna menambah sumber data. Hasil penelitian menunjukkan bahwa (1) Sebagian besar wisatawan yang datang berasal dari Semarang sebesar 32%. (2) Mayoritas wisatawan yang berkunjung ke Museum Radya Pustaka berusia antara 17-25 tahun dan kebanyakan dari mereka adalah pelajar atau mahasiswa dengan prosentase 52%. (3) Sebagian besar wisatawan yang datang ke Museum Radya Pustaka adalah bertujuan untuk melakukan penelitian yaitu sebesar 34%. (4) Harapan wisatawan yang berkunjung terhadap kelangsungan Museum Radya Pustaka sebagian besar adalah agar ditingkatkan lagi pengelolaan dan keamanan museum, agar kejadian hilangnya benda-benda koleksi museum tidak terulang lagi dikemudian hari. Kesimpulan dari hasil penelitian ini bahwa wisatawan yang berkujung ke Museum Radya Pustaka Surakarta mayoritas berasal dari Semarang, mayoritas berusia 17-25 tahun dan kebanyakan dari mereka adalah berprofesi sebagai pelajar dan mahasiswa. Kebanyakan wisatawan yang datang bertujuan untuk melakukan penelitian, serta harapan wisatawan terhadap Museum Radya Pustaka adalah supaya lebih ditingkatkan lagi pengelolaan dan keamanan museum

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Deducing electron properties from hard X-ray observations

    No full text
    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future
    corecore