522 research outputs found

    Stochastic order results and equilibrium joining rules for the Bernoulli Feedback Queue

    Get PDF
    We consider customer joining behaviour for a system that consists of a FCFS queue with Bernoulli feedback. A consequence of the feedback characteristic is that the sojourn time of a customer already in the system depends on the joining decisions taken by future arrivals to the system. By establishing stochastic order results for coupled versions of the system, we establish the existence of homogeneous Nash equilibrium joining policies for both single and multiple customer types which are distinguished through distinct quality of service preference parameters. Further, it is shown that for a single customer type, the homogeneous policy is unique

    The Bernoulli Feedback Queue with Balking: stochastic order results and equilibrium joining rules

    Get PDF
    We consider customer joining behaviour for a system that consists of a FCFS queue with Bernoulli feedback. A consequence of the feedback characteristic is that the sojourn time of a customer already in the system depends on the joining decisions taken by future arrivals to the system. By establishing stochastic order results for coupled versions of the system, we prove the existence, and uniqueness, of Nash equilibrium joining policies, and show that these are characterized by (possibly randomized) threshold rules. We contrast the Nash rule with the socially optimizing joining rule that minimizes the long-term expected average sojourn time (or cost) per customer. The latter rule is characterized by a nonrandomized threshold, and we show that the Nash rule admits at least as many customers into the system as the socially optimizing one

    Commissioning of a 0.8 MWth CFBC for Oxy-Fuel Combustion

    Get PDF
    Oxy-fuel fluidized bed combustion (FBC) is a new technology being developed for power production from carbonaceous fuels while producing a nearly pure steam of CO2 ready for sequestration or storage. Unlike oxy-fuel pulverized fuel combustion technology, oxy-fuel FBC offers the opportunity to use poor quality coals, hydrocarbon residues and a range of other materials including biomass. In Canada, pitches, tars and bottoms, in particular, are available in large quantities in western Canada, and this technology offers an opportunity to deal with many of these waste feedstocks in an environmentally benign manner. In addition, oxy-fuel circulating FBC (CFBC) can be fired at lower flue gas recycle ratio, offering potentially smaller plants for any given power output, and can capture sulphur in situ. CanmetENERGY has been operating a 75 kW oxy-fuel CFBC since 2006 with full flue gas recycle. Initial results were very encouraging and in order to further study oxy-fuel FBC technology, a 0.8 MWth CFBC unit has been retrofitted for oxy-fuel research. The facility is used to emulate commercial oxy-fuel CFBC performance. The modifications included adding oxygen supply, flue gas recycle train, airtight fly ash discharge, flue gas compressor for baghouse pulsing and system purge, etc., as well as upgrading the control and instrumentation for oxy-firing. The most major challenge has been to properly seal the entire CFBC unit to prevent air ingress. Fuels fired during the commissioning phase included bituminous coal and petroleum coke from the US, and lignite from Saskatchewan. Combustion under oxy-fuel conditions has proved to be very stable and the transition from air firing mode to oxyfuel firing mode and vice versa were quick and presented little operational difficulties. This work has demonstrated that the retrofitted oxy-fuel CFBC can produce a stream of flue gas containing 80% to 90% CO2. The NOx emissions were significantly lower compared to air firing in CFBC with the same fuel. SO2 capture was in the range of 70% to 75%, but limestone utilization is lower than in air-firing mode, and research is on-going to better understand sulphation under oxy-firing conditions

    Profile Characteristics of Cut Tooth Surfaces Developed by Rotating Instruments

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68018/2/10.1177_00220345570360062301.pd

    Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation

    Get PDF
    The use of naturally occurring ores as oxygen carriers in CLC processes is attractive because of their relative abundance and low cost. Unfortunately, they typically exhibit lower reactivity and lack the mechanical robustness required, when compared to synthetically produced carriers. Impregnation is a suitable method for enhancing both the reactivity and durability of natural ores when used as oxygen carriers for CLC systems. This investigation uses impregnation to improve the chemical and mechanical properties of a Brazilian manganese ore and a Canadian iron ore. The manganese ore was impregnated with Fe2O3 and the iron ore was impregnated with Mn2O3 with the goal of forming a combined Fe/Mn oxygen carrier. The impregnated ore's physical characteristics were assessed by SEM, BET and XRD analysis. Measurements of the attrition resistance and crushing strength were used to investigate the mechanical robustness of the oxygen carriers. The impregnated ore's mechanical and physical properties were clearly enhanced by the impregnation method, with boosts in crushing strength of 11-26% and attrition resistance of 37-31% for the impregnated iron and manganese ores, respectively. Both the unmodified and impregnated ore's reactivity, for the conversion of gaseous fuel (CH4 and syngas) and gaseous oxygen release (CLOU potential) were investigated using a bench-scale quartz fluidised-bed reactor. The impregnated iron ore exhibited a greater degree of syngas conversion compared to the other samples examined. Iron ore based oxygen carrier's syngas conversion increases with the number of oxidation and reduction cycles performed. The impregnated iron ore exhibited gaseous oxygen release over extended periods in an inert atmosphere and remained at a constant 0.2% O2 concentration by volume at the end of this inert period. This oxygen release would help ensure the efficient use of solid fuels. The impregnated iron ore's reactivity for CH4 conversion was similar to the reactivity of its unmodified counterpart. The unmodified manganese ore converted CH4 to the greatest extent of all the samples tested here, while the impregnated manganese ore exhibited a decrease in reactivity with respect to syngas and CH4 conversion

    The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is 1+21+\sqrt{2}

    Full text link
    In 2010, Duminil-Copin and Smirnov proved a long-standing conjecture of Nienhuis, made in 1982, that the growth constant of self-avoiding walks on the hexagonal (a.k.a. honeycomb) lattice is ÎŒ=2+2.\mu=\sqrt{2+\sqrt{2}}. A key identity used in that proof was later generalised by Smirnov so as to apply to a general O(n) loop model with n∈[−2,2]n\in [-2,2] (the case n=0n=0 corresponding to SAWs). We modify this model by restricting to a half-plane and introducing a surface fugacity yy associated with boundary sites (also called surface sites), and obtain a generalisation of Smirnov's identity. The critical value of the surface fugacity was conjectured by Batchelor and Yung in 1995 to be yc=1+2/2−n.y_{\rm c}=1+2/\sqrt{2-n}. This value plays a crucial role in our generalized identity, just as the value of growth constant did in Smirnov's identity. For the case n=0n=0, corresponding to \saws\ interacting with a surface, we prove the conjectured value of the critical surface fugacity. A crucial part of the proof involves demonstrating that the generating function of self-avoiding bridges of height TT, taken at its critical point 1/ÎŒ1/\mu, tends to 0 as TT increases, as predicted from SLE theory.Comment: Major revision, references updated, 25 pages, 13 figure

    Fluidised bed combustion of two species of energy crops

    Get PDF
    The use of biomass fuels for energy production through combustion has a growing application worldwide mainly for two reasons: first, the utilization of biomass for energy contributes to mitigate emission of green house gases; second, its use decreases the dependence of imported fossil fuels in Europe. The objective of this work was to study the combustion behaviour of two endogenous biomass species: cardoon (cynara cardunculus) and arundo (arundo donax), which were specially produced in energy crops plantations. Mixtures of cardoon and a forestry biomass specie (eucalyptus) were also studied to evaluate potential benefits from synergies between both biomass fuel types. The results showed that the utilization of cardoon, in pelletized form, and loose arundo as feedstock, did not give rise to any operational problems related with the feeding system. It was verified that the mono combustion of cardoon could pose problems at industrial scale in fluidised bed systems, considering the high levels of HCl and NOX emissions obtained and tendency to sinter the bed sand material. The addition of the forestry biomass to cardoon appeared to prevent the bed agglomeration problem. Furthermore, both the NOX and SO2 emissions were found to decrease at the same time suggesting potential synergy of blending different types of biomass regarding pollutant emissions and in bed agglomeration problems

    (1+3) Covariant Dynamics of Scalar Perturbations in Braneworlds

    Full text link
    We discuss the dynamics of linear, scalar perturbations in an almost Friedmann-Robertson-Walker braneworld cosmology of Randall-Sundrum type II using the 1+3 covariant approach. We derive a complete set of frame-independent equations for the total matter variables, and a partial set of equations for the non-local variables which arise from the projection of the Weyl tensor in the bulk. The latter equations are incomplete since there is no propagation equation for the non-local anisotropic stress. We supplement the equations for the total matter variables with equations for the independent constituents in a cold dark matter cosmology, and provide solutions in the high and low-energy radiation-dominated phase under the assumption that the non-local anisotropic stress vanishes. These solutions reveal the existence of new modes arising from the two additional non-local degrees of freedom. Our solutions should prove useful in setting up initial conditions for numerical codes aimed at exploring the effect of braneworld corrections on the cosmic microwave background (CMB) power spectrum. As a first step in this direction, we derive the covariant form of the line of sight solution for the CMB temperature anisotropies in braneworld cosmologies, and discuss possible mechanisms by which braneworld effects may remain in the low-energy universe.Comment: 22 pages replaced with additional references and minor corrections in Revtex4, and accepted for publication in Phys. Rev.

    Observational constraints on braneworld chaotic inflation

    Get PDF
    We examine observational constraints on chaotic inflation models in the Randall-Sundrum Type II braneworld. If inflation takes place in the high-energy regime, the perturbations produced by the quadratic potential are further from scale-invariance than in the standard cosmology, in the quartic case more or less unchanged, while for potentials of greater exponent the trend is reversed. We test these predictions against a data compilation including the WMAP measurements of microwave anisotropies and the 2dF galaxy power spectrum. While in the standard cosmology the quartic potential is at the border of what the data allow and all higher powers excluded, we find that in the high-energy regime of braneworld inflation even the quadratic case is under strong observational pressure. We also investigate the intermediate regime where the brane tension is comparable to the inflationary energy scale, where the deviations from scale-invariance prove to be greater.Comment: 5 pages RevTeX4 file with three figures incorporated. Minor changes to match version accepted by Physical Review
    • 

    corecore