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Abstract

We consider customer joining behaviour for a system that consists of a FCFS
queue with Bernoulli feedback. A consequence of the feedback characteristic is
that the sojourn time of a customer already in the system depends on the joining
decisions taken by future arrivals to the system. By establishing stochastic order
results for coupled versions of the system, we prove the existence, and unique-
ness, of Nash equilibrium joining policies, and show that these are characterized
by (possibly randomized) threshold rules. We contrast the Nash rule with the
socially optimizing joining rule that minimizes the long-term expected average
sojourn time (or cost) per customer. The latter rule is characterized by a non-
randomized threshold, and we show that the Nash rule admits at least as many
customers into the system as the socially optimizing one.

Keywords: FCFS queue with Bernoulli feedback; coupling; Nash equilibrium; social
optimality
AMS: 90B22; 91A10; 60E15; 91A13; 91A14

1 Introduction

This paper considers the joining behaviour of customers into a First Come First Served
Bernoulli Feedback queueing system. Each arriving customer joins the system, or
balks, on the basis of the number of customers already present. It is assumed that cus-
tomers who join the system do not renege at any stage. An important consequence of
the Bernoulli feedback property is that the sojourn time of any customer who is already
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in the system may be affected by customer arrivals in the future. Joining behaviour of
customers to the system is considered in the context of the following two scenarios.
In the first, each customer compares their expected sojourn time (or cost) in the sys-
tem with some fixed cost parameter associated with balking, and makes the joining
decision that yields the smallest expected cost. Since this involves taking into account
the joining decisions taken by other customers, it is natural to consider the Nash equi-
librium as the appropriate characterization of behaviour. Our second scenario is one
in which the joining decision of each customer is selected by a centralized authority,
with the objective of minimizing long-term expected costs averaged across all cus-
tomers. In common with other literature on admission control into queues, we discuss
whether decentralized decision making can be as good as, or perhaps worse than, that
under centralized control, when judged according to the social criterion posed in our
problem.

Naor (1969) carried out one of the earliest studies of optimal customer joining
behaviour into single-server queueing systems. He assumes a constant holding cost per
customer per unit time and assumes that a fixed reward accrued to each customer in the
system upon completion of service (thus, in effect, a linear holding cost). He shows
that, within the class of (stationary) deterministic threshold policies, there exist unique
individually optimal and socially optimal joining rules that minimize the expected cost
to each customer and the long-run (expected) cost per unit time, respectively. Finally,
he also shows that the socially optimal threshold is a lower bound on the threshold that
is individually optimal.

Similar results have been established in a number of extensions to the above sys-
tem. For example, Yechiali (1971) considers the GI/M/1 system (with linear cost struc-
ture), and shows that, amongst all policies, there exists a non-randomized threshold
joining rule that is self-optimizing, from the point of view of each customer. He also
shows that in the class of stationary policies, the socially optimizing policy that mini-
mizes an average cost criterion, is also characterized by a non-randomized threshold.
Again the socially optimal threshold is seen to be a lower bound to the one that is
individually optimal. Yechiali (1972) establishes corresponding results for the GI/M/s
queue. However, Altman & Hassin (2002) argue that the individually optimal joining
policy for theM/G/1 queue does not exhibit the usual threshold structure, due to the
queue lengths giving an indication as to the residual time of the customer in service to
new arrivals at the system.

Using an approach based on uniformization (Lippman 1975), Lipmann & Stidham
(1977) derive results analogous to those of Naor and Yechiali for a model in which the
service rate is a bounded, concave increasing, function of the number of customers in
the system. Other relevant papers include Stidham (1978), where a convex holding cost
is assumed, and Johansen & Stidham (1980), where a stochastic input-output system
with a very general structure is considered. The survey article of Stidham (1985) and
the book of Hassin & Haviv (2003) provide useful overviews of the relevant literature.

A common feature of all the models cited above is that the time or cost of a par-
ticular customer already in the system is unaffected by the joining behaviour of future
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arrivals. This allows policies to be formulated that are optimal for each individual cus-
tomer. However, in feedback models, the sojourn time of a customer already in the
system depends on the joining decisions taken by future arrivals to the system. Nat-
ural applications of FCFS queueing systems with feedback arise, for example, in the
theory of telephone traffic (Takács 1963); see Takagi (1991) and the references therein
for variations and extensions to the basic model. We can also think of this system as
a model for a single-line manufacturing process in which each job is independently
tested, and sent through the process again if a fault is discovered or the work done to
the job is deemed unsatisfactory (Peköz & Joglekar 2002). We can still define and con-
struct ’optimal’ joining rules for these models, but only if knowledge about the joining
behaviour of future arrivals can be assumed; thus the appropriate solution concept to
consider is that of the Nash equilibrium, and we discuss this in detail later in this paper.

Nash equilibrium joining rules for a ’single line’ queueing system have been exam-
ined by Altman & Shimkin (1998) in the context of the processor sharing discipline.
There it was assumed that the effective service rate to each customer in the queue,
ν(x) = µ(x)/x, is strictly decreasing inx (wherex is the number in the system, and
µ(x) the corresponding service rate). For their system, they show that any candidate
Nash equilibrium policy is characterized by a threshold structure, that a Nash equilib-
rium policy always exists, and will be unique when the policy is symmetric, i.e. each
customer invokes exactly the same joining rule. This model was later extended to the
case of multi-class heterogeneous preferences in Ben-Shahar, Orda & Shimkin (2000),
in which the existence of the Nash equilibrium was also established.

The analysis of Altman & Shimkin (1998) can be modified and extended to deal
with the multiple-server retrial queue (Brooms 2000), and the FCFS queue where the
service rate is (strictly) decreasing in the number in the system (Brooms 2003). More
recently, the FCFS queue with service rate strictly increasing in the queue length was
analyzed in Brooms (2005). It was shown that, under the proviso that the joining
rule for each customer is such that the chance that they are admitted to the queue is a
non-increasing function of the queue length, there exists (at most) a finite number of
symmetric Nash equilibria, and that at least one of these does not invoke randomization
in its joining decisions. This should be contrasted with Altman & Shimkin (1998) in
which existence and uniqueness were established (but with no guarantee of it being
non-randomized) within the widest possible class of policies.

One of the difficulties in establishing the stochastic order relations required for
our analysis stems from having to keep track of the actual position of certain of the
customers in the system, due to the queue discipline; a similar difficulty is encountered
for some other systems with the FCFS discipline (Brooms 2003, Brooms 2005), but
not, for example, with processor sharing (Altman & Shimkin 1998), or retrial queues
(Brooms 2000). Another difficulty stems from the Bernoulli feedback characteristic.
A standard method for conducting sample path comparisons, it to generate coupled
realizations of the queueing process; the progress of a ’marked’ customer in each of
the two processes is monitored and stochastic order results are thus derived. Unless
considerable care is taken over the class of policies considered and over the type of
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coupling used, ’dominance’ across each and every pair of realizations is not achieved.
So, in addition to the game-theoretic results presented in this paper, our second main
contribution arises from the construction and use of apparently novel couplings in
order to prove the ancillary lemmas.

The rest of this paper is organized as follows. In Section 2, the formulation of our
model, a prescription of the joining rules to be used by customers, and a summary of
the main results, are presented. In Section 3, sample path comparisons for our queue-
ing process, and monotonicity results for the expected sojourn time in the system, as a
function of the entry queue lengthx, are established. Similar results are proved with
respect to the threshold value associated with symmetric threshold joining policies in
Section 4; we also prove a continuity result for the expected sojourn time with respect
to this threshold. We bring these results together to characterize the structure, and to
prove the existence and uniqueness of a certain symmetric Nash equilibrium joining
policy in Section 5. We also show that a certain socially optimizing policy can be
characterized by a non-randomized threshold, and show that this is, in fact, a lower
bound on the Nash threshold. We close the paper in Section 6, with some concluding
remarks.

2 Preliminaries

2.1 The model

Consider a service system consisting of a single server queue (denoted byQ) with
Bernoulli Feedback and First Come First Served (FCFS) queue discipline. Assume
that each arriving customer joins the queue with a probability that depends only on
the observed queue lengthx in Q just prior to their arrival at the system, and allow
randomized decisions. A joining rule for an arriving customer is thus a sequence of
numbers{u(x)∈ [0, 1] : x = 0, 1, 2 . . . , B−1}, whereB may be finite, or infinite; if
the queue length just prior to their arrival isx then the customer joins the system with
probabilityu(x) and otherwise balks (i.e. does not join).

More formally, consider a process that starts at timet = 0 with an arriving customer
C0 that joinsQ. We denote the subsequent arriving customers byC1, C2, . . . and let
X(t) denote the number of customers inQ at timet, with initial stateX(0) = x0.

Let T = {T1, T2, T3, . . .} denote a sequence of independent, identically distributed,
positive, continuous random variables, with finite expectation, which we interpret as
the successive inter-arrival times, and letW = {W1,W2,W3, . . .}, andW , denote
a sequence of independent, identically distributed, positive, continuous random vari-
ables, with finite expectation, which we interpret as the successive service times. The
arrival epochs (to the system) of successive customersC1, C2, C3, . . . are then given
by the sequenceA = {A1, A2, A3, . . .}, whereAk = T1 + · · · + Tk, k = 1, 2, . . .

4



and, at least until the queue is empty for the first time, the successive service com-
pletion epochs inQ are given by the sequenceS = {S0, S1, S2, S3, . . .}, whereSk =
S0 + W1 + · · · + Wk, k = 1, 2, . . . (with appropriate modification thereafter). We
assume that, with probability 1, the arrival epochs and service completion epochs are
distinct.

Similarly, let U = {U1, U2, U3, . . .} denote a sequence of independent random vari-
ables, each of which has a uniform distribution on the interval(0, 1] and letF =
{F0, F1, F2, . . .} be a sequence of independent Bernoulli random variables with pa-
rameterp, so for eachk = 0, 1, 2, 3, . . ., Fk = 1 with probability p ∈ (0, 1) and
Fk = 0 with probability1 − p. We interpret theU ’s as the successive arrival joining
decision variables, so customerCk joinsQ if and only if Uk ≤ uk(X(Ak)), and inter-
pret theF ’s as the successive feedback decision variables, so at the completion of the
j-th service inQ after timet = 0, the customer that has just completed service is fed
back to the end of the queue inQ if Fj = 1 and otherwise departs the system ifFj = 0.

In an abuse of terminology, we shall sometimes useQ to refer to the process as well
as the queueing system itself; we shall refer to the number held in the system as the
queue size or length (thus referring to the total number of customers queueing up for,
and actually in, service). Under this model, the evolution ofQ is completely deter-
mined by the initial queue sizeX(0), the collection of joining rules for each one of the
future customers{u1, u2, . . .}, the residual service timeS0 of the customer (if any) in
service atQ at t = 0, and the values of the variables in the sequencesT ,W ,U andF .
In particular, we assume{X(t) : t ≥ 0} is a left-continuous, piecewise constant pro-
cess, whose jumps, if any, occur at arrival epochs{Ak} or service completion epochs
{Sj}, so that atSj a customer is still with the server, whereas atS+

j the customer has
either left the system or been fed back to the end of the queue. The jumps are formally
described by the relations:

X(A+
k ) = X(Ak) + 1{Uk ≤ uk(X(Ak))} k = 1, 2, 3, . . . (1)

X(S+
j ) = X(Sj)− 1{Fj = 0} j = 0, 1, 2, . . . (2)

with appropriate modification if the buffer is full, orX(Sj) = 0, j = 0, 1, 2, . . ..

2.2 Individual joining rules and population policies

Let u denote the joining rule for a given customer. We are particularly interested in
the simple class ofthresholdjoining rules under which a customer joinsQ if the queue
size is below a given threshold value, balks if the queue size is above the threshold
value, and possibly randomizes between these actions if it equals the threshold value.
LetZ+ denote the set of integers{1, 2, 3, . . .} and letN denoteZ+ ∪ {0}.
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For nonnegative integerL ∈ N andq ∈ [0, 1), we say a joining ruleu is an[L, q]-
threshold rule if forx ∈ N

u(x) =





1 if x < L
q if x = L
0 if x > L

(3)

Associated with each[L, q]-threshold rule is a unique real valueg = L + q. We refer
to g as thethreshold valueassociated with the rule, and represent the rule itself more
compactly by[g].

For a population of customers arriving in the sequenceC0, C1, C2, . . ., we call the
corresponding vector of customer joining rules apopulation joining policyand denote
it by π = (u0, u1, u2, . . .). We letD∞ denote the class ofnon-increasingpopulation
policies for which each component ruleuk is such thatuk(x) is non-increasing inx;
we let S∞ denote the class ofsymmetricpopulation policies for which each of the
components rulesuk are identical; and we letT∞ denote the class ofthresholdpopu-
lation policies, for which eachuk is a threshold joining rule. Observe thatT∞ ⊂ D∞.
If all customers adopt the same joining ruleu then we denote the resulting popula-
tion joining policyπ = (u, u, u, . . .) ∈ S∞ by u∞; similarly, if all customers use the
same threshold joining rule[g] we denote the resulting population joining policy by
π = [g]∞.

2.3 Main Results

In the following sections, we prove a number of stochastic order results pertaining to
the behaviour of the expected sojourn time of a customer in the system. Apart from
being of interest in their own right, these results will be used to establish the existence,
uniqueness, and structure of Nash equilibrium population joining policies for an asso-
ciated stationary game.

Let vk(x, β, π), x∈N, be the sojourn time ofCk in Q, given that at its arrival,x cus-
tomers were already present in the system, the residual service time of the customer
at the server isβ > 0, and that future arrivals adhere to the decision rules inferred by
π. DefineVk(x, β, π) to be the expected value ofvk(x, β, π). When the service time
has an exponential distribution, the expected sojourn time of a customer that joins
the queue does not depend on the residual service time (if any), and we simply write
vk(x, π) andVk(x, π) respectively.

Note: indexing of entry queue sizes of the formx ∈ N, x = 0, 1, . . ., or x = 1, 2, . . .
are to be understood as running up toB − 1 wheneverB is finite. Also, the interval
[0, B) is interpreted to mean[0, B] if B is finite, and[0,∞) if B is infinite.

Our main results are listed in the rest of this section. Theorems 1 to 4 characterize
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the dependence of the expected sojourn time on bothx andg, and are mostly proved
by invoking couplings of a non-trivial nature. The game-theoretic results of Theorems
5 and 6 are proved using a combination of Theorems 1-4, but under the proviso that
the total expected time spent at the server for a customer inQ is less than the ’cost’ of
balking from the system.

Theorem 1 Consider aGI/G/1 Bernoulli feedback system and letπ ∈ D∞ be any
non-increasing population joining policy. Then, for eachx = 1, 2, . . . and β > 0,
V (x + 1, β, π)− V (x, β, π) ≥ (1− p)E(W ).

The specialization of this result to the case of exponential service times can be found
in Corollary 3.1. Theorem 1 is somewhat less general than its counterpart in Altman
& Shimkin (1998) in thatπ is restricted to lie inD∞. The classD∞ infers that there
is less chance that each customer actually joins the system as the queue length there
increases. Under additional assumptions on the arrival and departure processes, we
can extend our result to another class of policies.

Theorem 2 Consider anM/M/1 Bernoulli feedback system and letπ ∈ S∞ be any
symmetric population joining policy. Then, for eachx = 0, 1, 2, . . ., V (x + 1, π) −
V (x, π) ≥ (1− p)E(W ).

Theorem 3 Consider aGI/G/1 Bernoulli feedback system and let[g]∞ and [g̃]∞ be
symmetric threshold population joining policies with0 ≤ g < g̃ and g̃ ∈ [0, B).
(i) Supposẽg ≤ 1. ThenV (0, [g̃]∞) = V (0, [g]∞), and for eachx = 1, 2, . . . and
β > 0, V (x, β, [g̃]∞) = V (x, β, [g]∞).
(ii) Supposeg ≥ 1. Then there existsδ0 > 0 such thatV (0, [g̃]∞) − V (0, [g]∞) ≥ δ0,
and for eachx = 1, 2, . . . andβ > 0, there existsδx > 0 such thatV (x, β, [g̃]∞) −
V (x, β, [g]∞) ≥ δx.

Theorem 4 Consider aGI/G/1 Bernoulli feedback system and let[g]∞ be a symmet-
ric threshold population joining policy withg > 0. ThenV (0, [g]∞) is a continuous
function ofg, and, for eachx = 1, 2, . . . and β > 0, V (x, β, [g]∞) is a continuous
function ofg ∈ [0, B).

Theorem 5 Consider aGI/M/1 Bernoulli feedback system and assume that attention
is restricted to the classD∞ of non-increasing population joining policies.
(i) If π = (u0, u1, u2, . . . , . . .) ∈ D∞ is a Nash equilibrium population joining policy,
then eachuk is a threshold joining rule (with finite threshold).
(ii) There exists a unique symmetric Nash equilibrium population joining policyπ∗ =
(g∗, g∗, g∗, . . .) = [g∗]∞ in the class of policiesD∞.

Theorem 6 Consider anM/M/1 Bernoulli feedback system.
(i) If π = u∞ ∈ S∞ is a Nash equilibrium population joining policy, thenu is a
threshold joining rule (with finite threshold).
(ii) There exists a unique symmetric Nash equilibrium population joining policyπ∗ =
(g∗, g∗, g∗, . . .) = [g∗]∞.
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3 Monotonicity in the queue length x

3.1 Monotonicity for a GI/G/1 system

We first consider aGI/G/1 Bernoulli feedback queueing system where each potential
customer uses a joining rule which is a non-increasing function of the queue size just
prior to their arrival. Letx denote the queue size upon joining. We show that, for
x ≥ 1, the expected sojourn time of a joining customer is a strictly increasing function
of x.

Without loss of generality, we focus on a marked customerC that joins the queue
at timet = 0. For k = 1, 2, 3, . . . , , we assume each successive potential customer,
Ck, say, arrives at corresponding epochAk, and finds a queue of sizeX(Ak). Ck has
the option of either joining the queue or departing the system, and joins the queue
with probabilityuk(X(Ak)), where eachuk(x) is a (possibly different) non-increasing
function ofx. Note that the presence of a finite bufferB can be incorporated by taking
uk(x) = 0 for x ≥ B.

Let v(x, β, π) denote the sojourn time for customerC who joins the queueing system,
when the queue size just prior to arrival isx ≥ 1, the population joining policy (i.e.
the set of joining rules for later arriving potential customers) isπ = (u1, u2, u3. . . . , ),
and when the residual service time for the customer currently in service at timet = 0
is S0 = β > 0. Let V (x, β, π) be the expected value of this quantity.

To comparev(x, β, π) with v(x + 1, β, π), we look at path-wise comparisons of cou-
pled realizations of two queueing processes, sayQ andQ̃, in which marked customers
C (resp. C̃) join the queue at timet = 0 when there are alreadyx (resp.x + 1) cus-
tomers in the queue, the population joining policy isπ and the current residual service
time isβ. We say that at each timet a customer in theQ process islevelwith a cus-
tomer in theQ̃ process if both have the same position (first, second, third etc.,) in their
respective queues, and we say one customer isahead of(resp.behind) the other if it
has a position nearer (resp. further from) its server. We show that for each sample path
in the coupled processes, the customer who joins withx in the system leaves either at
the same epoch or at least one service completion before the customer who joins with
x + 1 in the system. Moreover, this second possibility happens on a set of positive
probability, so thatV (x, β, π) < V (x + 1, β, π).

The coupling we use here is designed to ensure that bothC and C̃ make the same
number of visits to the server in the coupled systems. We saw from the model descrip-
tion in section 2.1 that the evolution ofQ (and similarlyQ̃) is completely specified by
the sequence of successive inter-arrival timesT , service timesW, population joining
policy π, joining decision random variablesU and feedback random variablesF . The
coupling we use is defined in terms of these variables as follows:

8



Coupling 1 (i) Consider two processesQ andQ̃ with X(0) = x > 0 andX̃(0) =
y > 0. Couple the systems so that they have the same initial residual lifetime and so
that, taken in the natural order, they have the same sequence of inter-arrival times, the
same sequence of service times, the arriving customers use the same sequence of join-
ing rules and the joining decision random variables take the same sequence of values.
Formally, this means we setS0 = S̃0 = β, T = T̃ ,W = W̃, π = π̃ andU = Ũ .

(ii) Now couple the feedback decision variables as follows. Forr = 1, 2, 3 let Fr =
{Fr,1, Fr,2, Fr,3 . . .} denote mutually independent sequences of independent Bernoulli
random variables, each with parameterp.

Use the sequence of values inF1 to determine both the successive feedback deci-
sions for customerC in Q and the successive feedback decisions forC̃ in Q̃, so, for
example, bothC andC̃ are fed back after their first service if and only ifF1,1 ≤ p.
Thus bothC andC̃ are fed back exactly the same number of times in both processes.

Use the sequence of values inF2 to determine the successive feedback decisions for all
other customers inQ. Thus, the first customer inQ other thanC to complete service
is fed back if and only ifF2,1 ≤ p, the second is fed back if and only ifF2,2 ≤ p, etc.

Now consider the other customers iñQ. By construction, the two processesQ and
Q̃ have the same service completion epochs, at least until one or other is empty for the
first time. During this period, couple the feedback decision for each customer other
than C̃ to be exactly the same as that for the corresponding customer completing at
the same time inQ, exceptfor customers (other thañC) who complete service at the
same time asC. Say there is such a customer who completes service inQ̃ at the same
moment thatC completes itsk-th service inQ. Denote this customer bỹHk and de-
note byHk that customer inQ (if any) which is level withC̃ at that moment. If such
a customerHk exists, define the the feedback decision forH̃k to be the same as the
(already assigned) next feedback decision forHk in Q. If there is no customer level
with C̃ at that moment, then define the feedback decision forH̃k using the value of
thek-th variable in the sequenceF3. Once the two processes no longer have the same
service completion epochs, the feedback decisions can be assigned arbitrarily. ¤

Note that under Coupling 1 a customer oppositeC may depart even thoughC is fed
back, so there may be epochss whenX(s) > X̃(s). As well as showing how the
relative positions ofC andC̃ are maintained between their service completion epochs,
the next Lemma shows that if̃X(0) = X(0)+1 thenX(s) can never exceed̃X(s)+1.

Lemma 3.1 Consider realizations of the two processesQ and Q̃ under Coupling 1
with y = x + 1, and assume the population follows some non-increasing population
policy π ∈ D∞. Let τ denote the set of epochs at whichC or C̃ (or both) complete
a service and neither have yet departed, and lets and t denote successive epochs in
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C H̃k

C̃Hk

Hk

C

C̃

Figure 1: A possible realization ofQ andQ̃ just prior (L.H.S.) and just after (R.H.S.)
C is fed back for thek-th time. C andH̃k are in service on the L.H.S. The feedback
decisions forC andC̃ remain coupled throughout. The feedback decision forH̃k is
coupled with that ofHk if Hk is present, otherwise it is chosen independently; in the
diagram neither are fed back. The next feedback decisions for the other customers in
Q̃ are coupled with those for the parallel customers inQ, and will be reassigned if they
are fed back.

τ ∪ {0}. Then
(i) The positions ofC andC̃ relative to each other do not change in(s, t).
(ii) If X̃(s+) ≥ X(s+) thenX̃(t) ≥ X(t).
(iii) If X(s+) = X̃(s+) + 1 thenX(t) ≤ X̃(t) + 1.

Proof
Consider the processes in the interval(s, t), where any feedback decisions following
the first service completion have been implemented by times+, but those following
the second service completion have not yet been implemented att (by virtue of the
’left-continuity’ of the queue-length process). During the interval, the composition of
each queue changes only at arrival or service completion epochs.
(i): At service completion epochs, the coupling ensures that customers make the same
feedback decision in both processes, so the positions ofC andC̃ relative to each other
do not change. At arrival epochs, the arriving customers join behindC and C̃, so
cannot affect their relative positions until the next epoch inτ . Thus the positions ofC
andC̃ relative to each other do not change in(s, t).
(ii) and (iii): At service completion epochs, the coupling ensures that the relative queue
sizes remain unchanged. At arrival epochs when the queue lengths are equal, the
coupling of the joining decision variables ensures that the same joining decision is
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taken in both processes. At arrival epochs when one queue is smaller than the other,
the fact that the joining decision rule is a non-increasing function of the size of the
queue, together with the coupling and relation (1), ensures that either the same joining
decision is taken in both processes or the arrival joins the queue in the process with
the smaller queue but does not join in the process with the larger queue. Thus the
difference in the queue sizes can only decrease during(s, t) and once the queue sizes
are equal, they remain equal. In particular, ifX(s+) = X̃(s+) + 1 then eitherX(t) =

X̃(t) or X(t) = X̃(t) + 1, so in either caseX(t) ≤ X̃(t) + 1. ¤

Lemma 3.2 Consider realizations of the two processesQ and Q̃ under Coupling 1
with y = x + 1, and assume the population follows some non-increasing population
policy π ∈ D∞. Let K denote the common number of visits bothC and C̃ make to
the server in each realization, and lets1, . . . , sK and s̃1, . . . , s̃K denote the service
completion epochs forC and C̃ respectively. TheñX(sk) ≥ X(sk) and s̃k ≥ sk for
k = 1, . . . , K.

Proof
Fork = 1, . . . , K, let Pk denote the proposition:̃X(sk) ≥ X(sk) ands̃k ≥ sk.

First assumeK = 1. At t = 0+, C hasx other customers ahead of it inQ while
C̃ hasx + 1 customers ahead of it iñQ, so the position ofC in Q is one ahead of that
of C̃ in Q̃. From Lemma 3.1, these relative positions are maintained untilC completes
service, soC leaves the system exactly one service completion epoch beforeC̃. More-
over,X̃(0+) = X(0+) + 1 > X(0+) so again from Lemma 3.1̃X(s1) ≥ X(s1). Thus
P1 is true.

Now assumePk is true for somek = 1, . . . , K − 1 for K > 1. Sincek < K,
bothC andC̃ are fed back after theirk-th service. NowC is either level withC̃ at
sk or C is ahead ofC̃ at sk. If C is ahead ofC̃ at sk, then there may or may not be a
customer inQ level with C̃ at sk. If there is a customer inQ level with C̃ at sk, then
that customer may or may not be fed back at its next service. There are then four cases
to consider.

Case 1: [C is level withC̃ at sk].
SinceC is level with C̃ at sk ands̃k ≥ sk, bothC andC̃ are fed back together atsk.
SinceX̃(sk) ≥ X(sk) andC was fed back withC̃ at sk, C is level with or ahead of
C̃ after being fed back, and̃X(s+

k ) ≥ X(s+
k ). Lemma 3.1 then implies that the next

epoch inτ occurs atsk+1, thatC is still either level with or ahead of̃C at that point
and thatX̃(sk+1) ≥ X(sk+1). Finally, C̃ had completed no more thank services ats+

k

so it must have completed no more thank + 1 services ats+
k+1, sos̃k+1 ≥ sk+1.

Case 2: [C is ahead of̃C at sk and there is no customer inQ oppositeC̃ at sk].
From the fact that there is no customer oppositeC̃ in Q whenC completes service, it
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follows immediately that: (i)X̃(sk) > X(sk), (ii) C must be level with or ahead of
C̃ after being fed back, and (iii) the feedback decision for the customerH̃k in Q̃ who
completes service atsk is determined by the corresponding value in the sequenceF3,
independent of the realization forQ. SinceX̃(sk) > X(sk), we haveX̃(s+

k ) ≥ X(s+
k )

whetherH̃k departs or is fed back. SinceC is level with or ahead of̃C at s+
k , Lemma

3.1 implies that the next epoch inτ is atsk+1, thatC is still level with or ahead of̃C at
that point, and that̃X(sk+1) ≥ X(sk+1). SinceC was ahead of̃C at sk ands̃k ≥ sk,
C̃ must have completed at least one less service thanC at s+

k , so it must still have
completed at least one less service thanC at s+

k+1, giving s̃k+1 > sk+1.

Case 3: [C is ahead ofC̃ at sk, Hk is oppositeC̃ at sk and is fed back at its next
service].
SinceC is ahead ofC̃ at sk then, together with̃sk > sk, this implies thatC̃ must
have completed say(r − 1) services ats+

k , where(r − 1) < k. SinceC is ahead of
C̃ at sk, there is a customer̃Hk 6= C̃ in Q̃ who completes service atsk and whose
feedback decision is coupled to be the same as that forHk, i.e. H̃k is also fed back at
s+

k . ThusX̃(s+
k ) ≥ X(s+

k ). Since there was a customer level with̃C at sk, C is now
behindC̃ after the feedback. Lemma 3.1 then implies that the next epoch inτ occurs
when C̃ completes service at̃sr and thatX̃(s̃r) ≥ X(s̃r). At s̃+

r , C̃ has completed
r ≤ k < K services, so both̃C andHk are fed back, giving̃X(s̃+

r ) ≥ X(s̃+
r ). Since

X̃(s̃r) ≥ X(s̃r), C is now ahead of̃C after the feedback. Lemma 3.1 then implies that
the next epoch inτ occurs whenC completes service atsk+1, thatC is still ahead of
C̃ at that point, and that̃X(sk+1) ≥ X(sk+1). SinceC̃ had completedr ≤ k services
at s̃+

r and has not completed any more services bysk+1, we havẽsk+1 > sk+1.

Case 4: [C is ahead ofC̃ at sk, Hk is oppositeC̃ at sk and departs at its next ser-
vice].
SinceH̃k now departs atsk while C is fed back, we haveX(s+

k ) ≤ X̃(s+
k ) + 1 so

eitherX(s+
k ) ≤ X̃(s+

k ) or X(s+
k ) = X̃(s+

k ) + 1. Since there was a customer level
with C̃ at sk, C is now behindC̃ after the feedback. Letr be as in Case 3. Lemma
3.1 now implies that the next epoch inτ occurs whenC̃ completes service at̃sr, and
thatX(s̃r) ≤ X̃(s̃r) + 1, so eitherX(s̃r) ≤ X̃(s̃r) or X(s̃r) = X̃(s̃r) + 1. At s̃+

r ,
C̃ has completedr ≤ k < K services and so is fed back, whileHk departs just like
H̃k, so eitherX(s̃+

r ) ≤ X̃(s̃+
r ) − 1 or X(s̃+

r ) = X̃(s̃+
r ), i.e. X̃(s̃+

r ) ≥ X(s̃+
r ). Thus

C̃ is either fed back level withC or behindC. Lemma 3.1 now implies that the next
epoch inτ is at sk+1, thatC is still level with or ahead of̃C at that point, and that
X̃(sk+1) ≥ X(sk+1). SinceC̃ had completed less thank services ats+

k and has only
completed one service betweensk andsk+1, it has completed at mostk + 1 services
by s+

k+1, and sõsk+1 ≥ sk+1.

Thus in all casesPk implies Pk+1. SinceP1 is true (using a similar argument for
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establishingP1 whenK = 1), the result follows by induction. ¤

Theorem 1
Consider aGI/G/1 Bernoulli feedback system and letπ ∈ D∞ be any non-increasing
population joining policy. Then, for eachx = 1, 2, . . . andβ > 0, V (x + 1, β, π) −
V (x, β, π) ≥ (1− p)E(W ).

Proof
Consider realizations of the two processesQ andQ̃ as in Coupling 1. Assume that
there are initiallyx customers ahead ofC in Q andy = x+1 customers ahead of̃C in
Q̃ and that customers in bothQ andQ̃ are using the same non-increasing population
joining policy π ∈ D∞. From Lemma 3.2,C completes its first service ats1 (one
customer ahead of̃C), and completes all its remaining services either level withC̃ or at
least one customer ahead. The probability thatC (andC̃) depart after just one service
is (1 − p), and the expected extra timẽC spends inQ̃ in that case isE(W ). Thus,
taking expectation over all possible realizations, we haveV (x+1, β, π)−V (x, β, π) ≥
(1− p)E(W ). ¤

3.2 Monotonicity for a GI/M/1 system

When the service time has an exponential distribution, the residual service time of a
customer in service at an arrival epoch has exactly the same exponential distribution as
the service time of a customer starting service at that point. Thus the expected sojourn
time of a customer that joins the queue does not depend on the residual service time
of the customer (if any) in service on joining. In this case we can writeV (x, π) for
the expected sojourn time for customerC when the queue size on joining isx and the
population joining policy isπ = (u1, u2, u3. . . .).

Corollary 3.1
Consider aGI/M/1 Bernoulli feedback system and letπ ∈ D∞ be any non-increasing
population joining policy. Then, for eachx = 0, 1, 2, . . ., V (x + 1, π) − V (x, π) ≥
(1− p)E(W ).

Proof
The proof forx = 1, 2, . . . follows directly from Theorem 1 since the expected sojourn
times are independent ofβ. Moreover, the result forx = 0 can be proved in exactly
the same way as the results forx > 0 in section 3.1, since we can now arrange the
coupling so that the residual service time of the customer in service inQ̃ at t = 0 has
exactly the same value as the service time of the customer joining and entering service
in Q at t = 0. ¤
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3.3 Monotonicity for an M/M/1 system

When the arrival process forms a stationary Poisson process we can extend the class of
population joining rules for which Theorem 1 applies. Consider anM/M/1 Bernoulli
feedback system where potential customers all use the same joining ruleu, whereu(x)
is a general (not necessarily non-increasing) function of the queue sizex on arrival. We
again show that the expected sojourn time of a customer that joins a non-empty queue
is a strictly increasing function of the queue size on joining.

Again let v(x, π) denote the sojourn time for customerC when the queue size on
joining isx ≥ 1, when the symmetric population joining policy (for arriving potential
customers) isπ = u∞, and letV (x, π) be the expectation of this quantity. Again we
comparev(x, π) with v(x + 1, π), by looking at path-wise comparisons of coupled
realizations of two queueing processes, sayQ andQ̃, in which marked customersC
(resp.C̃) join the queue att = 0 when there are alreadyx (resp.x + 1) customers in
the queue.

The coupling we use is, perhaps, more complex than Coupling 1, but is again de-
signed to ensure that bothC andC̃ make the same number of visits to the server in the
coupled systems.
For fixedu, the evolution ofQ̃ is completely specified as before by the sequence of
successive inter-arrival times̃T , service times̃W, joining decision random variables̃U
and feedback random variables̃F . The coupled evolution ofQ can then be described
informally as follows: Consider a realization of̃Q in which C̃ makesK visits to the
server. Fork = 1, 2, 3, . . . let s̃1, . . . , s̃K denote the corresponding service comple-
tion epochs ofC̃. We ”freeze” the processQ until C̃ is level withC and then couple
the two processes to have the same arrival epochs, service completion epochs, arrival
decision variables and feedback decision variables until bothC andC̃ complete their
first service. By construction, wheñC is fed back for the first time, there are at least
as many customers ahead of it as there are ahead ofC when it is fed back for the first
time. To extend the realization until the next service completion epoch forC, again
”freeze” the processQ until C̃ is again level withC and then re-couple them until both
C andC̃ complete their next service. This procedure can be continued iteratively until
bothC andC̃ depart.

We can define this coupling more formally as follows:

Coupling 2
Let s1, . . . , sK and s̃1, . . . , s̃K be the successive service completion epochs of cus-
tomersC andC̃, respectively, and sets0 = s̃0 := 0. For somek ∈ {0, . . . , K − 1},
assume that we have constructedQ up to the epochs+

k , X̃(s̃k) ≥ X(sk) ands̃k ≥ sk.

Setb = X̃(s̃k)−1−(X(sk)−1) = X̃(s̃k)−X(sk), which fork ≥ 1 (resp.k = 0) rep-
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resents the difference between the number ahead ofC and the number ahead of̃C as
they are fed back for thek-th time (resp. as they join their respective systems at time0).

Now observeQ̃ from s̃+
k until b services have taken place and then coupleQ with

it. Let r1, r2, . . . denote the arrival epochs of successive customers inC̃ after s̃k and
t1, t2, . . . the successive service completion epochs. Assume that there have beene
arrivals andf services inQ̃ prior to s̃+

k , and that there area arrivals andb service
completions inQ̃ in the interval(s̃k, tb] and c arrivals andd service completions in
the interval(tb, s̃k+1], so d = X(s+

k ) and tb+d = s̃k+1. Then starting at times+
k ,

we construct the realization ofQ over the interval(sk, sk + tb+d − tb] as follows. If
c > 0, then there are taken to bec arrivals inQ in this interval, with arrival epochs
sk + ra+1− tb, . . . , sk + ra+c− tb and joining decision parametersUe+a+1, . . . , Ue+a+c.
There are taken to bed service completions inQ in this interval, with service com-
pletion epochssk + tb+1 − tb, . . . , sk + tb+d − tb and feedback decision parameters
Ff+b+1, . . . , Ff+b+d.
The coupling aftersK is arbitrary.

¤

unmarked customer
service epoch for

arrival epoch

marked customer
service epoch for

KEY:

sk sk+1 sk+2

s̃k s̃k+1 s̃k+2

tbk
tbk+1

Figure 2: Possible realizations ofQ (bottom) andQ̃ (top) under Coupling 2. The dia-
gram shows the time horizons near thek-th service transitions of the marked customer
in the two processes. The service epochs for whichC̃ becomes level withC after the
k-th and(k + 1)-th services ofC̃ are given bytbk

andtbk+1
, respectively. The arrival

epochs inQ̃ closest totbk
andtbk+1

are also depicted.
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Theorem 2
Consider anM/M/1 Bernoulli feedback system and letπ ∈ S∞ be any symmetric
population joining policy. Then, for eachx = 0, 1, 2, . . ., V (x + 1, π) − V (x, π) ≥
(1− p)E(W ).

Proof
Consider realizations of the two processesQ andQ̃ under Coupling 2. Assume that
there are initiallyx customers ahead ofC in Q andx + 1 customers ahead of̃C in Q̃
and that all customers in bothQ andQ̃ use the decision rule inferred by the symmetric
policy π ∈ S∞.

Fork = 1, . . . , K, let Pk denote the proposition:̃X(s̃k) ≥ X(sk) ands̃k ≥ sk.

Assume thatK > 1 and thatPk holds for somek ∈ {1, . . . , K − 1}.

Due to the coupling, the position ofC in Q ats+
k is exactly the same as that of̃C in Q̃

at t+b and their relative positions stay the same over the respective intervals(sk, sk+1]

and(tb, s̃k+1]. The last service completion iñQ in the interval(tb, s̃k+1] occurs wheñC
completes its next service, soC completes its next service at the corresponding epoch
andsk+1 = sk + tb+d − tb. At that pointC is either fed back in the same way asC̃ if
k + 1 < K or C departs likeC̃ if k + 1 = K.

The arrival, service completion, and feedback processes, forQ over the interval(sk, sk+

tb+d − tb] completely mirror those iñQ over the interval(tb, tb+d]. However, the num-
berX̃(t+b ) in Q̃ at t+b is, by construction, at least as great asX(s+

k ) in Q. Furthermore,
consider anyt ∈ (0, tb+d − tb). Then whileX̃(tb + t) > X(sk + t), the actual queue
size dependent joining decision inQ may differ from the corresponding decision iñQ;
however, if for somet∗ ∈ (0, tb+d− tb) the queue sizes are the same (i.e.X̃(tb + t∗) =
X(sk + t∗)), then the joining decisions will be the same for allt ∈ [t∗, tb+d − tb),
and hence the queue sizes will stay equal over the corresponding intervals inQ andQ̃.
Thus, by construction,̃X(s̃k+1) ≥ X(sk+1). Finally, by assumption,̃sk ≥ sk and by
constructiontb ≥ s̃k, so that̃sk+1 = tb+d = tb + (tb+d− tb) ≥ sk + (tb+d− tb) = sk+1.
ThusPk+1 also holds.

By construction,X̃(s̃0) = X̃(0) = x + 1 > x = X(0) = X(s0), C startsb = 1

customer ahead of̃C in their respective systems, and completes its first service at
s1 = s̃1 − t1 wheret1 is the service completion epoch of the first customer served in
Q̃ after s+

0 . Using a similar argument to the one in the preceding paragraph, it also
follows that X̃(s̃1) ≥ X(s1). ThusP1 holds here (and in the case whereK = 1).
Hence, and in particular,̃sK ≥ sK .

The probability thatC (and C̃) depart after just one service is(1 − p), and the ex-
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pected extra timẽC spends inQ̃ in that case isE(W ).

Now, for eachk, the memoryless property of the Exponential distribution implies that
the valuera+1 − tb used in constructing the arrival epochs for the interval(sk, sk+1)
is again an independent observation from the same Exponential inter-arrival distribu-
tion. Thus, when we take expectation over all possible realizations ofQ̃ the coupling
also generates an expectation over all possible realizations ofQ with just the right
distributions for the inter-arrival (and service) times. ThusV (x + 1, π) − V (x, π) ≥
(1− p)E(W ). ¤

4 Monotonicity and continuity in the threshold g

In this section we again consider aGI/G/1 Bernoulli feedback queueing system but
now assume all customers use the same threshold joining rule[L, q]. Recall from sec-
tion 2.2 that the rule can be written in compact form as[g], whereg = L + q. We
consider the dependence of the expected sojourn time on the joining rule and show
that it is a continuous function ofg, which is constant forg ∈ [0, 1], and is strictly
increasing forg ≥ 1.

To motivate the population joining rule, consider what would happen if, instead of join-
ing the feedback queue, customers could join an alternative queueing system where the
expected sojourn time was fixed atθ. We assume customers always join the feedback
system when it is empty on arrival. However, if the queue size on arrival isx ≥ 1,
we assume that each arriving customer joins the feedback queue only if their expected
sojourn time is less than the fixed sojourn time in the alternative queue. In this case,
the results of the previous section mean that each customer will use a threshold joining
rule. Our focus here is on the behaviour of the expected sojourn time of an individual
customer that does join the feedback queue when all the other customers are using the
same threshold joining rule[g].

Now let g = L + q and g̃ = L̃ + q̃ denote the threshold values for two threshold
joining rules withg < g̃, so that eitherL < L̃ or L = L̃ andq < q̃. Let v(x, β, [g]∞)
(resp.v(x, β, [g̃]∞)) denote the sojourn time for a customer who joins when there are
alreadyx ≥ 1 customers in the system, when all other customers are using joining rule
[g] (resp.[̃g]) and the customer in service on joining has residual service timeβ. Let
the expected value ofv(x, β, [g]∞) (resp. v(x, β, [g̃]∞)) be denoted byV (x, β, [g]∞)
(resp.V (x, β, [g̃]∞)).

To comparev(x, β, [g]∞) and v(x, β, [g̃]∞), we again compare coupled realizations
of two processes. We show that in the coupled processes the customer who joins the
system in which customers use[g] leaves either at the same epoch or at least one ser-
vice completion epoch before the customer who joins the system in which customers
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use[g̃]. We then show that this second possibility happens on a set of positive proba-
bility, so thatV (x, β, [g̃]∞) > V (x, β, [g]∞).

Assume that there are initiallyx customers ahead of bothC in Q and C̃ in Q̃. As-
sume also that all other customers inQ use the same threshold joining policyπ = [g]∞

and all other customers iñQ use the same threshold joining policyπ = [g̃]∞, where
g̃ > g.

Lemma 4.1 Consider realizations of the two processesQ and Q̃ under Coupling 1
with y = x. Let τ denote the set of epochs at whichC or C̃ (or both) complete a
service and neither have yet departed, and lets and t denote successive epochs in
τ ∪ {0}. Then
(i) the positions ofC andC̃ relative to each other do not change in(s, t)

(ii) if X̃(s+) ≥ X(s+) thenX̃(t) ≥ X(t)

(iii) if X(s+) = X̃(s+) + 1 thenX(t) ≤ X̃(t) + 1.

Proof
The argument is exactly the same as that for Lemma 3.1, except for the part relating to
the changes in the respective queue sizes at arrival epochs.

Under the given policies a customer arriving inQ atz when the queue size isx joins if
and only if eitherx < L or x = L andU ≤ q, and a customer arriving iñQ at z when
the queue size isx joins if and only if eitherx < L̃ or x = L̃ andU ≤ q̃, where either
L < L̃, or L = L̃ andq < q̃.

If X(z) < X̃(z), thenX(z+) ≤ X̃(z+), whatever the respective joining decisions.
If X(z) = X̃(z), then the customer will join inQ if and only if eitherX(z) < L or
X(z) = L andU ≤ q. SinceX(z) = X̃(z) and eitherL < L̃ or L = L̃ andq < q̃,
the customer joining inQ implies eitherX̃(z) < L̃ or X̃(z) = L̃ andU ≤ q̃, so the
customer must also join iñQ. Thus, at each arrival epoch in(s+, t), X(z) ≤ X̃(z)

impliesX(z+) ≤ X̃(z+), giving (ii).

Similarly, if X(z) = X̃(z)+1, then the customer will join inQ only if the customer in
Q̃ also joins, so the customers either join in both queues (givingX(z+) = X̃(z+)+1),
neither queue, or just iñQ (giving X(z+) = X̃(z+)). Combined with the argument
used to establish (ii), this gives (iii). ¤

Lemma 4.2 Consider realizations of the two processesQ and Q̃ under Coupling 1
with y = x. Let K denote the common number of visits bothC and C̃ make to
the server in each realization, and lets1, . . . , sK and s̃1, . . . , s̃K denote the service
completion epochs forC and C̃ respectively. TheñX(sk) ≥ X(sk) and s̃k ≥ sk for
k = 1, . . . , K.
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Proof
Fork = 1, . . . , K, let Pk denote the proposition:̃X(sk) ≥ X(sk) ands̃k ≥ sk.

First assumeK = 1. At t = 0, C andC̃ are level withx customers ahead of them.
From Lemma 4.1, these relative positions are maintained untilC completes service, so
s1 = s̃1. Moreover,X̃(0+) = X(0+) so again from Lemma 4.1 (ii),̃X(s1) ≥ X(s1).
ThusP1 is true.

The proof for the caseK > 1 follows in exactly the same way as in Lemma 3.2,
except that we invoke Lemma 4.1 instead of Lemma 3.1. ¤

Theorem 3 Consider aGI/G/1 Bernoulli feedback system and let[g]∞ and [g̃]∞ be
symmetric threshold population joining policies with0 ≤ g < g̃ and g̃ ∈ [0, B).
(i) Supposẽg ≤ 1. ThenV (0, [g̃]∞) = V (0, [g]∞), and for eachx = 1, 2, . . . and
β > 0, V (x, β, [g̃]∞) = V (x, β, [g]∞).
(ii) Supposeg ≥ 1. Then there existsδ0 > 0 such thatV (0, [g̃]∞) − V (0, [g]∞) ≥ δ0,
and for eachx = 1, 2, . . . andβ > 0, there existsδx > 0 such thatV (x, β, [g̃]∞) −
V (x, β, [g]∞) ≥ δx.

Proof
Consider realizations of the two processesQ andQ̃ under Coupling 1. Assume that
there are initiallyx customers ahead of bothC in Q andC̃ in Q̃. Assume also that all
other customers inQ are using the same threshold population joining policyπ = [g]∞

and all other customers iñQ are using the same threshold joining policyπ = [g̃]∞,
whereg̃ > g.

First suppose that0 ≤ g < g̃ ≤ 1. The sojourn times of the marked customers in
the two processes will differ only if there is a disparity in the queue lengths during
their stay in the systems. A customer is admitted into the queue of either process only
if the queue is empty just prior to arrival. Clearly, however, the marked customer will
have left by then, thus establishing (i).

Let s1 be as defined in Lemma 4.2. Now suppose that1 ≤ g < g̃, and letRx de-
note the set of realizations for whichX(s1) = L and X̃(s1) = L + 1. If L < L̃,
thenRx would include for example realizations in which no customers arrived during
the service periods of the firstx customers, all thesex customers departed following
service,L customers arrived during the (first) service period forC (and hencẽC), and
q < UL < 1. If L = L̃, thenRx would include for example realizations in which
no customers arrived during the service periods of the firstx customers, all thesex
customers departed following service,L customers arrived during the (first) service
period forC (and hencẽC), andq < UL < q̃. ThusRx has positive probability. Note
that the eventRx is independent of the number of visitsK thatC andC̃ make to the
server and thatP (K = 2) = p(1− p).
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For realizations inRx with K = 2, C departsQ at s2 one service period ahead of
C̃ and the expected extra timẽC spends inQ̃ in that case isE(W ). From Lemma 4.2,
in all other realizationsC completes all its services either level with̃C or at least one
service period ahead. Thus, taking expectation over all possible realizations, we have
V (x, β, [g̃]∞)− V (x, β, [g]∞) ≥ p(1− p)P (Rx)E(W ) = δx > 0. ¤

We now introduce a third coupling which we will use to show that the expected sojourn
timeV (x, β, π) is continuous ing for symmetric threshold policies[g]∞. The coupling
is designed to ensure that the queue length inQ̃ is no less than that ofQ.

Coupling 3 SetS0 = S̃0 = β, T = T̃ ,W = W̃, U = Ũ , F = F̃ . ¤

Under Coupling 3, the successive arrival epochsAk andÃk are the same in both sys-
tems; the successive service completion epochsSk andS̃k are the same, at least until
one or other system is empty; and the successive feedback variables are the same.
However, although the successive joining variablesUk andŨk are the same, the suc-
cessive arrival joining decisions will not necessarily be the same.Ck joins Q if and
only if Uk ≤ uk(X(Ak)), and similarly forC̃k. Thus the arrival joining decisions may
differ in cases when the queue sizesX(Ak) andX̃(Ak) differ, or when the queue sizes
are the same but the actions specified by the decision rulesuk andũk differ.

Now consider realizations of the processes inQ andQ̃ under Coupling 3, withg =
L + q and g̃ = L + q̃, such that0 ≤ q < q̃ < 1, such that̃g ∈ [0, B). This means
that service and arrival events are identical under both processes, except that at queue
length L an arriving customer iñQ has a probability(q̃ − q) of being accepted when
the corresponding customer is rejected inQ. The strategy will be to construct an upper
bound onV (x, β, [g̃]∞)− V (x, β, [g]∞) which can also be shown to tend to0 asg̃− g
tends to0.

Theorem 4 Consider aGI/G/1 Bernoulli feedback system and let[g]∞ be a symmet-
ric threshold population joining policy withg ∈ [0, B). ThenV (0, [g]∞) is a continu-
ous function ofg, and, for eachx = 1, 2, . . . andβ > 0, V (x, β, [g]∞) is a continuous
function ofg.

Proof
Consider realizations of the two processesQ andQ̃ under Coupling 3, and policies
[g]∞ and[g̃]∞, respectively, whereg and g̃ are as defined in the paragraph preceding
the statement of this theorem. Assume that there are initiallyx customers ahead ofC
andC̃ in their respective systems. From Theorem 3 part (i), continuity holds trivially
on the interval [0,1]. Thus assume that1 ≤ g < g̃. By the coupling,C andC̃ complete
their first service at the same epoch(s1 = s̃1). Fork = 1, 2, . . ., let Ek denote the set
of realizations for whichC andC̃ complete their firstk services at the same epochs
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(so s1 = s̃1, . . . , sk = s̃k) but complete their(k + 1)-st service at different epochs
(sk+1 6= s̃k+1). Let E0 denote the remaining set of realizations for whichC and C̃
complete all their services at the same epochs, soE0, E1, . . . form a partition of the set
of all possible realizations.

Because the two systems start in identical initial states and are coupled to have the
same sequence of inter-arrival and service times, a realization inEk (k ≥ 1) occurs
only if C is fed back at leastk times,C andC̃ have exactly the same service comple-
tion epochssr, r = 1, . . . , k, and there is at least one arrival in the period(sk−1, sk)

who joins the system iñQ but not inQ; i.e. this customer arrives when there areL in
both systems and has a joining decision variableU with q < U ≤ q̃.

Let E1
k denote the event thatC is fed back at leastk times andC and C̃ have ex-

actly the same firstk service completion epochssr, r = 1, . . . , k. Let E2
k denote the

event that there is at least one arrival in the period(sk−1, sk) who joins the system in
Q̃ but not inQ, and letD denote the difference in the sojourn times ofC andC̃. Then
Ek ⊂ E1

k ∩ E2
k soP (Ek) ≤ P (E2

k |E1
k)P (E1

k) andE(D) =
∑∞

k=1 E(D|Ek)P (Ek) ≤∑∞
k=1 E(D|Ek)P (E2

k |E1
k)P (E1

k).

Given thatEk happens, any difference in the sojourn time is due only to the differ-
ence between their sojourn times fromsk onwards. Since there can be at mostL + 1
customers in each system, the expected timeC spends in the system between each
service completion epoch is at most(L + 1)E(W ) and the expected number of passes
through the system aftersk is 1/(1 − p), so the expected sojourn time ofC from sk

onwards is no greater than(L + 1)E(W )/(1− p). Arguing similarly forC̃, E(D|Ek)
is at most2(L + 1)E(W )/(1− p).

Also, E1
k occurs only ifC is fed back at leastk times, soP (E1

k) ≤ pk.

Finally, we derive a bound onP (E2
k |E1

k) as follows. Consider an arrival process that
starts with an arrival at timet = 0. Let Z denote a random variable independent of the
arrival process whose distribution is the same as that of the sum ofL + 1 independent
service times, and letY denote the number of arrivals in the closed interval[0, Z].
ClearlyY is almost surely finite (Feller 1966) so

∑∞
r=0 P (Y = r) = 1.

Now consider a realization inE1
k , soC andC̃ are both fed back together to the end

of their respective queues atsk−1 = s̃k−1 and have the samek-th service completion
epochsk = s̃k. Since the population joining rules are threshold rules with threshold
values of the formg = L + q andg̃ = L + q̃, the total number in each queue will be
at mostL + 1 and so the timesk − sk−1 until their next service completion will be no
more than the sum ofL + 1 independent service times and so will be stochastically no
greater thanZ. Moreover, the first subsequent arrival will occur aftersk−1 so the num-
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ber of arrivals in[sk−1, sk] will be stochastically smaller than the number of arrivals in
the interval[0, sk − sk−1] for an arrival process that starts with an arrival att = 0, and
this will in turn be stochastically no greater thanY . Thus if M denotes the number
of arrivals to (both)Q andQ̃ in [sk−1, sk], thenM is stochastically smaller thanY .
Since[1 − (q̃ − q)]Y is strictly decreasing inY (by noting that[1 − (q̃ − q)] < 1),
E([1− (q̃ − q)]M) ≥ E([1− (q̃ − q)]Y ).

Let U1, U2, . . . be a sequence of independent random variables each with a Uniform
distribution on(0, 1]. Think of Ur as the joining variable of ther-th arrival aftersk−1.
Now givenE1

k occurs,E2
k fails to occur if all joining decisions are the same in both

systems in the interval[sk−1, sk], which will follow if Ur does not lie in the interval
(q, q̃] for ther-th arrival in the interval,r ≥ 1, sinceX(s+

k−1) = X̃(s̃+
k−1). Thus, using

the fact that theUr are independent of all other variables, we have that for a givenq
andq̃,

1− P (E2
k |E1

k) ≥ P (M = 0) +
∞∑

r=1

P (M = r,

r⋂
j=1

{Uj /∈ (q, q̃]})

= P (M = 0) +
∞∑

r=1

P (M = r)P (
r⋂

j=1

{Uj /∈ (q, q̃]})

= P (M = 0) +
∞∑

r=1

{1− (q̃ − q)}rP (M = r)

=
∞∑

r=0

(1− (q̃ − q))rP (M = r)

=
∞∑

r=0

(1− (g̃ − g))rP (M = r)

= E[(1− (g̃ − g))M ].

It follows thatP (E2
k |E1

k) ≤ 1−E[(1− (g̃−g))M ] ≤ 1−E[(1− (g̃−g))Y ]. However,
|(1 − (g̃ − g))Y | ≤ 1 and(1 − (g̃ − g))Y −→ 1 as g̃ − g → 0 almost surely (using
the fact thatY is almost surely finite). Hence, by the dominated convergence theorem,
E[(1− (g̃ − g))Y ] −→ 1 asg̃ − g −→ 0, and thusP(E2

k |E1
k) −→ 0 also. Thus

E(D) =
∞∑

k=1

E(D|Ek)P (Ek)

≤
∞∑

k=1

E(D|Ek)P (E2
k |E1

k)P (E1
k)

≤ [1− E([1− (g̃ − g)]Y )][2(L + 1)E(W )/(1− p)]
∞∑

k=1

pk

→ 0 as g̃ − g → 0.
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5 Individual Nash equilibrium and social optimality

So far, we have looked at joining decisions for an isolated Bernoulli feedback queue.
We now assume that the cost of balking upon arrival toQ is some constant valueθ.
We can think ofθ as the time spent (or, alternatively, the cost of) using a ’private’
or self-service system which is slower thanQ, in the sense thatθ is greater than the
total expected time spent at the server for each customer inQ. More precisely, it will
be assumed that1/µ(1 − p) < θ; this condition says that it is always optimal for a
customer to joinQ if there are no customers in the system upon arrival, and there will
be no further customers joining the system in the future. The joining decision depends
only on the observed number of customers atQ on arrival. Customers who joinQ are
not permitted to renege during their sojourn, nor are those who balk permitted to join
Q at a later stage.

We consider first what happens when customers make their own individual joining
decisions and each customer is only interested in minimizing their own expected so-
journ time, or cost. Due to the Bernoulli feedback characteristic, the sojourn time of
a particular customer inQ may be affected by the number of customers in the queue
during its sojourn, which in turn is affected by the decisions of subsequent arriving
customers. This problem fits into a game theoretic framework. We derive the Nash
equilibrium solution for the state dependent stationary game that arises and show that
under this regime, the joining rule for each customer has a particular (possibly ran-
domized) threshold form.

We then consider what happens when the joining decision for each customer is made
by a central controller orsocial optimizer, whose goal is to minimize the overall ex-
pected cost per customer, averaged across customers admitted toQ and those that balk.
In this case we show that there is a deterministic threshold rule which characterizes a
socially optimaljoining rule.

Finally, we show that the threshold for the symmetric Nash equilibrium joining rule is
at least as large as the threshold for the socially optimal rule. The interpretation is that,
when other customers use the Nash equilibrium joining rule, it is not to the advantage
of any particular customer to change their joining rule, even though the Nash equilib-
rium joining rule produces greater congestion inQ and greater overall average sojourn
times than the socially optimal rule.
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5.1 Individual Nash equilibrium

For customers who joinQ, the sojourn time is given by the time interval between
arrival at, and departure from, the system. For aGI/M/1 Bernoulli feedback system
the expected sojourn time depends only on the population joining policy and the queue
size on joining. Consider a customerCk who arrives to findx customers already in
Q when the population joining policy isπ. Let Vk(x, π) denote the expected sojourn
time for customerCk if they decide to join the system when there are alreadyx in the
system and the population joining policy isπ. The overall expected time/cost spent to
customerCk if it invokes the joining ruleuk is

uk(x)Vk(x, π) + (1− uk(x))θ.

Consider an arbitrary population joining policyπ = (u0, u1, u2, . . .). Each cus-
tomer wishes to minimize their own expected sojourn time, or cost, in the light of the
actions of other customers. The expected cost customerCk if they join Q when the
queue size isx is Vk(x, π) and their expected cost if they decide to balk isθ. Thus we
follow Ben-Shahar et al. (2000) in defining a joining ruleuk to be abest responsefor
customerCk against the policyπ if:

uk(x) =





1 if Vk(x, π) < θ
qx if Vk(x, π) = θ
0 if Vk(x, π) > θ

(4)

where0 ≤ qx ≤ 1 is arbitrary. A population joining policyπ = (u0, u1, u2, . . .) is said
to be aNash equilibriumif, for every k ∈ N, uk is a best response forCk againstπ.
Thus no customer can gain by changing their own joining rule while other customers
continue to use the Nash equilibrium policy. More precisely, for arbitraryk ∈ N, the
overall cost toCk cannot be further minimized by replacinguk with another joining
rule.

Theorem 5 Consider aGI/M/1 Bernoulli feedback system and assume that attention
is restricted to the classD∞ of non-increasing population joining policies.
(i) If π = (u0, u1, u2, . . . , . . .) ∈ D∞ is a Nash equilibrium population joining policy,
then eachuk is a threshold joining rule (with finite threshold).
(ii) There exists a unique symmetric Nash equilibrium population joining policyπ∗ =
(g∗, g∗, g∗, . . .) = [g∗]∞ in the class of policiesD∞.

Proof
Let π = (u0, u1, u2, . . . , . . .) be a non-increasing population joining policy. From
Corollary 3.1 we have that, for eachk ∈ N, Vk(x, π) is a strictly increasing function
of x ∈ N, with Vk(x, π) →∞ asx →∞.

Further, Theorem 3 and Theorem 4 together imply thatVk(x, [g]∞) is constant for
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g ∈ [0, 1], strictly increasing ing ∈ [1, B), and continuous forg ∈ [0, B), for each
k ∈ N andx ∈ N.

Without loss of generality, we focus attention on customerC0, and consider the point-
to-set mapping

G∗(g) = {g′ ∈ [0, B] : [g′] is optimal for C0 against [g]∞}.
If it were the case thatV0(n, [0]∞) = θ for somen ≥ 0, thenV0(n, [g]∞) = θ for
any g ∈ (0, 1] also, due to the constancy ofV0(·, [g]∞) in this region. However, this
would imply that the graph ofG∗(·) would include the set of points in the box with
corners(0, n), (0, n + 1), (1, n + 1), and(1, n). Non-intersection of this box with the
line of unit slope, with the possible exception of(1, n), can be guaranteed provided
thatV0(0, [0]∞) < θ; however, this is equivalent to the condition that1/µ(1− p) < θ.
The rest of the proof is similar to that of Theorem 1 from Altman & Shimkin (1998).¤

The results of Theorem 5 are somewhat less general than their counterpart in Alt-
man & Shimkin (1998) in thatπ is restricted to lie inD∞. The classD∞ infers that
there is less chance that each customer entersQ as the queue length there increases
(which perhaps is not unreasonable). Nevertheless, we find that we can extend our
result, under additional assumptions on the arrival process, to the class ofS∞.

Theorem 6 Consider anM/M/1 Bernoulli feedback system.
(i) If π = u∞ ∈ S∞ is a Nash equilibrium population joining policy, thenu is a
threshold joining rule (with finite threshold).
(ii) There exists a unique symmetric Nash equilibrium population joining policyπ∗ =
(g∗, g∗, g∗, . . .) = [g∗]∞.

The proof of Theorem 6 is exactly the same as Theorem 5, except that it invokes
Theorem 2 rather than Corollary 3.1.

5.2 Social optimality

We shall now look at the behaviour of the system when the joining decision for each
customer is made by a central controller orsocial optimizer, on the basis of the queue
length atQ just prior to the arrival of the customer. Again, customers who are not
permitted to joinQ will instead experience a fixed cost ofθ. The goal of the social
optimizer is to minimize the overall expected cost/sojourn time per customer, averaged
across customers who are permitted to joinQ, and those that are refused entry.

Let J(X(An), an) represent the expected sojourn time of then-th customer to arrive
at the service facility when there areX(An) customers inQ just prior to its arrival, the
social optimizer takes decisionan, and where the decisions of future arrivals are gov-
erned by the policyπ (for conciseness of notation, this will be understood to coincide
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with the policy over which expectation is taken in the cost function below). Without
loss of generality, actions could be defined so thatan = 1 corresponds to the customer
being admitted intoQ, andan = 0 to it being refused entry. In cases where the decision
at timeAn is randomized, we can setan = 0, since the costs under both alternatives
are equal.

Defining

φπ(i) = lim
n→∞

inf Eπ
[
∑n

i=0 J(X(An), an)|X(0) = i]

n + 1

then the social optimizer looks for a policyπ∗ such that

φπ∗(i) = minφπ(i) for all i ∈ N.

Theorem 7 (i) SupposeQ is aGI/M/1 Bernoulli feedback system, where the service
time distribution at each visit to the server is exponential with mean1/µ. Then there
exists a non-randomized threshold control rule, say with thresholdNs, that is socially
optimal in the class of all (stationary) joining rules.
(ii) If the inter-arrival times are also exponential, say with mean1/λ, and if ρ =
λ/µ(1− p) < 1, thenNs is the socially optimal threshold if and only if

[Ns(1− ρ)− ρ(1− ρNs)]

(1− ρ)2
≤ µ(1− p)

θ
<

[(Ns + 1)(1− ρ)− ρ(1− ρNs+1)]

(1− ρ)2
. (5)

Proof
In Q the service time distribution at each visit to the server is exponential with mean
1/µ, so the total service time distribution (which excludes the time waiting for service)
for each joining customer is again exponential with mean1/(1−p)µ. Under any given
centrally imposed joining rule forQ, the queue length process inQ is equivalent to
that for aGI/M/1 system (saŷQ) with the same joining rule but where each customer
takes all their service periods consecutively, where their service time distribution is
exponential with mean1/(1 − p)µ. Thus the distribution of the queue length as seen
by an arriving customer, the evolution of the joining decisions, and the expected so-
journ time averaged over all customers that join the system, have equivalent behaviour
for Q andQ̂ (even though, for eachx, the expected sojourn times for customers that
join when there arex customers in the systemQ will differ from the corresponding
quantities forQ̂). Hence the overall sojourn time, or cost, – averaged across customers
who are admitted to the system and those that are refused entry – is the same forQ and
Q̂, and so the socially optimal joining rule is the same for both models.

The existence of a non-randomized socially optimalthresholdcontrol rule then fol-
lows from Theorem 6 of Yechiali (1971), where the quantityWn used in relation (15)
of that paper corresponds to−J(X(An), an) here. For future reference, let us denote
the corresponding threshold byNs. When the inter-arrival times are also exponential,
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say with mean1/λ, equation (5) characterizing the actual value ofNs can be estab-
lished in a similar way to relation (22) in Naor (1969). ¤

5.3 Comparison of Nash equilibrium and socially optimal policies

The Nash equilibrium population joining policy and the socially optimal joining policy
described above are both threshold policies. In this section we show that the threshold
Ns used by the socially optimal policy is no greater than the thresholdg∗ used by the
Nash equilibrium policy.

If the social optimizer admits or rejects customers toQ according to the threshold
control rule characterized byNs, then this is exactly the same as the customers volun-
tarily adhering to the symmetric threshold joining policy[Ns]

∞.

The proof of the following Lemma is based on the observation that under an appropri-
ate coupling, ifNs were greater thang∗, then the queue length process associated with
the first threshold would be greater than or equal to that of the second threshold, and
showing that this leads to a contradiction.

Theorem 8
Assumeg∗ ∈ [0, B).
(i) SupposeQ corresponds to theGI/M/1 Bernoulli feedback system. ThenNs ≤ g∗,
where[g∗]∞ is the unique symmetric Nash equilibrium joining policy in the classD∞.
(ii) SupposeQ corresponds to theM/M/1 Bernoulli feedback system. ThenNs ≤ g∗,
where[g∗]∞ is the unique Nash equilibrium joining policy in the classS∞.

Proof of Theorem 8
We define 2 processes:
theNs-process:- where all customers use the policy[Ns]

∞, and
theg∗-process:- where all customers use the policy[g∗]∞,
with the queue lengths initially equal to each other in the two processes.
Suppose for contradiction thatNs > g∗, whereNs ∈ [0, B). Consider these two
processes under Coupling 3.
Denote quantities associated with the socially optimal policy by an ’s’ and those by the
Nash equilibrium with a ’*’.
It is easy to show that

X∗(t) ≤ Xs(t) for all t ∈ [0,∞). (6)

As An is almost surely finite,J(X(An), ·) is well-defined for eachn ≥ 0. Since
corresponding customers (i.e. those with the same subscript index) across the two
processes arrive at the service facility at the same time, it is sufficient to establish
a dominance relation between the expected costs for each customer between these
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processes. For simplicity, we will denoteJ(X(An), an) by Jn. The following cases
exhaust all possibilities for then-th arrival to the system,n ∈ N, i.e. customerCn:
(a) Customer admitted intoQ under both processes. Then

J∗n = Vn(X∗(An), [g∗]∞) ≤ Vn(Xs(An), [g∗]∞) < Vn(Xs(An), [Ns]
∞) = Js

n.

where the first inequality follows from (6).
(b) Customer rejected under both processes.
Then clearly

J∗n = Js
n = θ.

(c) Customer admitted intoQ under theg∗-process but rejected under theNs-process.

J∗n = Vn(X∗(An), [g∗]∞) ≤ θ = Js
n

where the inequality follows from the fact that[g∗] is the best response against[g∗]∞.
(d) Customer admitted intoQ under theNs-process but rejected under theg∗-process.

J∗n = θ ≤ Vn(X∗(An), [g∗]∞) ≤ Vn(Xs(An), [g∗]∞) < Vn(Xs(An), [Ns]
∞) = Js

n.

The first inequality follows from the fact that[g∗] is the best response against[g∗]∞, the
second from (6) and the monotonicity ofVn(x, ·), and the third from the monotonicity
of Vn(·, [g]∞).
Now consider the sequence of states(X∗(An), Xs(An)), n ≥ 0, embedded at the
arrival epochs. Clearly, this is a Markov Chain with a finite state space and with a
single positive recurrent setZ = {(i, j) : 0 ≤ j − i ≤ Ns − L′; i ≤ L′}, where
L′ = L∗ + 1{q∗ > 0}. Furthermore, the states inZ are aperiodic (since, for example,
the state(0, 0) is a member ofZ, and is aperiodic); therefore, forn sufficiently large,
there exists an0 < ε < 1 such that the eventDn = {(X∗(An), Xs(An)) = (0, 0)}
occurs with a probability of at leastε; thus case(a) occurs with at least probability
ε for sufficiently largen. However, the inequalities of case(a), in conjunction with
Theorem 3, can be used to show thatJs

n − J∗n ≥ δ > 0, whereδ = inf{δx : x =
0, 1, . . . , Ns − 1} (noting thatg∗ ≥ 1). Hence, upon taking total expectations ofJs

n

andJ∗n, we see that the socially optimal policy performs strictly worse than the Nash
equilibrium threshold, giving the required contradiction.

¤

6 Concluding Remarks

The analysis of this paper shows that, within the sub-class of symmetric policies that
are characterized by a non-increasing joining rule,D∞∩ S∞, there exists a unique
Nash equilibrium for theGI/M/1 Bernoulli feedback system. We also show that
within the entire class of symmetric policies,S∞, but under the additional assumption
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of exponentiality for the inter-arrival times, there exists a unique Nash equilibrium.
Under both of these regimes, the Nash equilibrium is characterized by a (possibly
randomized) threshold joining rule. By a utilization of known results for the GI/M/1
queue, we establish (i) the existence and uniqueness of a joining rule, to be used by
each customer, that minimizes the long-term expected average cost per customer, (ii)
that the rule is characterized by a non-randomized threshold, and (iii) that a Nash
equilibrium will admit a customer into the system whenever the socially optimal one
does.

It is unclear, at this stage, however, whether the monotonicity results of Section 3
hold outside the class of policies so far considered. No counter-example is available at
present to suggest that they do not hold outside the class.
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