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Stochastic Order Results and Equilibrium Joining
Rules for the Bernoulli Feedback Queue

A. C. Brooms∗ E. J. Collins†

September 18th, 2013

Abstract

We consider customer joining behaviour for a system that consists of a FCFS
queue with Bernoulli feedback. A consequence of the feedback characteristic is
that the sojourn time of a customer already in the system depends on the joining
decisions taken by future arrivals to the system. By establishing stochastic order
results for coupled versions of the system, we establish the existence of homo-
geneous Nash equilibrium joining policies for both single and multiple customer
types which are distinguished through distinct quality of service preference pa-
rameters. Further, it is shown that for a single customer type, the homogeneous
policy is unique.

Keywords: FCFS queue with Bernoulli feedback; coupling; Nash equilibrium; multi-
ple customer types.
AMS: 90B22; 91A10; 60E15; 91A13; 91A14

1 Introduction

This paper considers the joining behaviour of customers into a First Come First Served
Bernoulli Feedback queueing system. Each arriving customer joins the system, or
balks, on the basis of the number of customers already present. It is assumed that
customers who join the system do not renege at any stage. An important consequence
of the Bernoulli feedback property is that the sojourn time of any customer who is
already in the system may be affected by customer arrivals in the future. We consider
the scenario in which each customer compares their expected sojourn time (or cost)
in the system with some fixed cost parameter associated with balking, and makes the
joining decision that yields the smallest expected cost. Since this involves taking into

∗Department of Economics, Mathematics, & Statistics, Birkbeck College, Malet Street, London
WC1E 7HX, U.K.

†School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, U.K.

1



account the joining decisions taken by other customers, it is natural to consider the
Nash equilibrium as the appropriate characterization of behaviour.

Naor (1969) carried out one of the earliest studies of optimal customer joining
behaviour into single-server queueing systems. He assumes a constant holding cost per
customer per unit time and assumes that a fixed reward accrued to each customer in the
system upon completion of service (thus, in effect, a linear holding cost). He shows
that, within the class of (stationary) deterministic threshold policies, there exist unique
individually optimal and socially optimal joining rules that minimize the expected cost
to each customer and the long-run (expected) cost per unit time, respectively. Finally,
he also shows that the socially optimal threshold is a lower bound on the threshold that
is individually optimal.

Similar results have been established in a number of extensions to the above sys-
tem. For example, Yechiali (1971) considers the GI/M/1 system (with linear cost struc-
ture), and shows that, amongst all policies, there exists a non-randomized threshold
joining rule that is self-optimizing, from the point of view of each customer. He also
shows that in the class of stationary policies, the socially optimizing policy that mini-
mizes an average cost criterion, is also characterized by a non-randomized threshold.
Again the socially optimal threshold is seen to be a lower bound to the one that is
individually optimal. Yechiali (1972) establishes corresponding results for the GI/M/s
queue. However, Altman & Hassin (2002) argue that the individually optimal joining
policy for the M/G/1 queue does not exhibit the usual threshold structure, due to the
queue lengths giving an indication as to the residual time of the customer in service to
new arrivals at the system.

Using an approach based on uniformization (Lippman 1975), Lipmann & Stidham
(1977) derive results analogous to those of Naor and Yechiali for a model in which the
service rate is a bounded, concave increasing, function of the number of customers in
the system. Other relevant papers include Stidham (1978), where a convex holding cost
is assumed, and Johansen & Stidham (1980), where a stochastic input-output system
with a very general structure is considered. The survey article of Stidham (1985) and
the book of Hassin & Haviv (2003) provide useful overviews of the relevant literature.

A common feature of all the models cited above is that the time or cost of a par-
ticular customer already in the system is unaffected by the joining behaviour of future
arrivals. This allows policies to be formulated that are optimal for each individual
customer. However, in feedback models, the sojourn time of a customer already in
the system depends on the joining decisions taken by future arrivals to the system.
We can still define and construct ‘optimal’ joining rules for these models, but only if
knowledge about the joining behaviour of future arrivals can be assumed; thus the ap-
propriate solution concept to consider is that of the Nash equilibrium, and we discuss
this in detail later in this paper.

Nash equilibrium joining rules for a ‘single line’ queueing system have been exam-
ined by Altman & Shimkin (1998) in the context of the processor sharing discipline.
There it was assumed that the effective service rate to each customer in the queue,
ν(x) = μ(x)/x, is strictly decreasing in x (where x is the number in the system, and
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μ(x) the corresponding service rate). For their system, they show that any candidate
Nash equilibrium policy is characterized by a threshold structure, that a Nash equilib-
rium policy always exists, and will be unique when the policy is symmetric, i.e. each
customer invokes exactly the same joining rule. This model was later extended to the
case of multi-class heterogeneous preferences in Ben-Shahar, Orda & Shimkin (2000),
in which the existence of the Nash equilibrium was also established.

The analysis of Altman & Shimkin (1998) can be modified and extended to deal
with the multiple-server retrial queue (Brooms 2000), and the FCFS queue where the
service rate is (strictly) decreasing in the number in the system (Brooms 2003). The
case for the FCFS queue with service rate strictly increasing in the queue length was
analyzed in Brooms (2005). In that paper, it was shown that, under the proviso that
the joining rule for each customer is such that the chance that they are admitted to the
queue is a non-increasing function of the queue length, there exists (at most) a finite
number of symmetric Nash equilibria, and that at least one of these does not invoke ran-
domization in its joining decisions. This should be contrasted with Altman & Shimkin
(1998) in which existence and uniqueness of a symmetric (possibly-randomized) equi-
librium was established without the additional proviso on the joining rules.

One of the difficulties in establishing the stochastic order relations required for
our analysis stems from having to keep track of the actual position of certain of the
customers in the system, due to the queue discipline; a similar difficulty is encountered
for some other systems with the FCFS discipline (Brooms 2003, Brooms 2005), but
not, for example, with processor sharing (Altman & Shimkin 1998), or retrial queues
(Brooms 2000). Another difficulty stems from the Bernoulli feedback characteristic.
A standard method for conducting sample path comparisons, is to generate coupled
realizations of the queueing process; the progress of a ‘marked’ customer in each of the
two processes is monitored and stochastic order results are thus derived. Unless great
care is taken over the set of policies being considered and over the type of coupling
being used, ‘dominance’ across each and every pair of realizations is not achieved.
So although the motivation for the analysis is the establishment of the game-theoretic
results presented in the final section, the main contribution and thrust of this paper
is the construction and use of non-standard couplings in order to prove the stochastic
orderings results.

The rest of this paper is organized as follows. In Section 2, the formulation of our
model, a prescription of the joining rules to be used by customers, and a summary of
the main results, are presented. In Section 3, sample path comparisons for our queue-
ing process, and monotonicity results for the expected sojourn time in the system, as a
function of the entry queue length x, are established. Similar results are proved with
respect to the threshold value associated with symmetric threshold joining policies in
Section 4; we also prove a continuity result for the expected sojourn time with re-
spect to this threshold. We bring these results together to characterize the structure,
and to prove the existence and uniqueness of a certain symmetric Nash equilibrium
joining policy in Section 5. The existence result is then extended to the case in which
customers form preference types which are characterized by their quality of service
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parameters.

2 Preliminaries

2.1 The model

Consider a service system consisting of a single server queue (denoted by Q) with
Bernoulli Feedback and First Come First Served (FCFS) queue discipline. Assume
that each arriving customer joins the queue with a probability that depends only on
the observed queue length x in Q just prior to their arrival at the system, and allow
randomized decisions. A joining rule for an arriving customer is thus a sequence of
numbers {u(x) ∈ [0, 1] : x = 0, 1, 2 . . . , B−1}, where B may be finite, or infinite; if
the queue length just prior to their arrival is x then the customer joins the system with
probability u(x) and otherwise balks (i.e. does not join). Denote the set of all possible
joining rules for an arriving customer by U.

More formally, consider a process that starts at time t = 0 with an arriving customer
C0 that joins Q. We denote the subsequent arriving customers by C1, C2, . . . and let
X(t) denote the number of customers in Q at time t, with initial state X(0) = x0.

Let T = {T1, T2, T3, . . .} denote a sequence of independent, identically distributed,
positive, continuous random variables, with finite expectation, which we interpret as
the successive inter-arrival times, and let W = {W1,W2,W3, . . .}, and W , denote
a sequence of independent, identically distributed, positive, continuous random vari-
ables, with finite expectation, which we interpret as the successive service times. The
arrival epochs (to the system) of successive customers C1, C2, C3, . . . are then given
by the sequence A = {A1, A2, A3, . . .}, where Ak = T1 + · · · + Tk, k = 1, 2, . . .
and, at least until the queue is empty for the first time, the successive service com-
pletion epochs in Q are given by the sequence S = {S0, S1, S2, S3, . . .}, where Sk =
S0 + W1 + · · · + Wk, k = 1, 2, . . . (with appropriate modification thereafter). We
assume that, with probability 1, the arrival epochs and service completion epochs are
distinct.

Similarly, let U = {U1, U2, U3, . . .} denote a sequence of independent random vari-
ables, each of which has a uniform distribution on the interval (0, 1] and let F =
{F0, F1, F2, . . .} be a sequence of independent Bernoulli random variables with pa-
rameter p, so for each k = 0, 1, 2, 3, . . ., Fk = 1 with probability p ∈ (0, 1) and
Fk = 0 with probability 1 − p. We interpret the U ’s as the successive arrival joining
decision variables, so customer Ck joins Q if and only if Uk ≤ uk(X(Ak)), and inter-
pret the F ’s as the successive feedback decision variables, so at the completion of the
j-th service in Q after time t = 0, the customer that has just completed service is fed
back to the end of the queue in Q if Fj = 1 and otherwise departs the system if Fj = 0.
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In an abuse of terminology, we shall sometimes use Q to refer to the process as well
as the queueing system itself; we shall refer to the number held in the system as the
queue size or length (thus referring to the total number of customers queueing up for,
and actually in, service). Under this model, the evolution of Q is completely deter-
mined by the initial queue size X(0), the collection of joining rules for each one of the
future customers {u1, u2, . . .}, the residual service time S0 of the customer (if any) in
service at Q at t = 0, and the values of the variables in the sequences T ,W ,U and
F . In particular, we assume {X(t) : t ≥ 0} is a left-continuous, piecewise constant
process, whose jumps, if any, occur at arrival epochs {Ak} or (potential) service com-
pletion epochs {Sj}, so that at Sj a customer is still with the server, whereas at S+

j

the customer has either left the system or been fed back to the end of the queue. The
jumps are formally described by the relations:

X(A+
k ) = X(Ak) + 1{Uk ≤ uk(X(Ak))} k = 1, 2, 3, . . . (1)

X(S+
j ) = X(Sj) − 1{Fj = 0} j = 0, 1, 2, . . . (2)

with appropriate modification if the buffer is full, or X(Sj) = 0, j = 0, 1, 2, . . ..

2.2 Individual joining rules and population policies

Let u denote the joining rule for a given customer. We are particularly interested in
the simple class of threshold joining rules under which a customer joins Q if the queue
size is below a given threshold value, balks if the queue size is above the threshold
value, and possibly randomizes between these actions if it equals the threshold value.
Let Z

+ denote the set of integers {1, 2, 3, . . .} and let N denote Z
+ ∪ {0}.

For nonnegative integer L ∈ N and q ∈ [0, 1), we say a joining rule u is an [L, q]-
threshold rule if for x ∈ N

u(x) =

⎧⎨
⎩

1 if x < L
q if x = L
0 if x > L

(3)

Associated with each [L, q]-threshold rule is a unique real value g = L + q. We refer
to g as the threshold value associated with the rule, and represent the rule itself more
compactly by [g].

For a population of customers arriving in the sequence C0, C1, C2, . . ., we call the
corresponding vector of customer joining rules a population joining policy and denote
it by π = (u0, u1, u2, . . .). The set of all possible population joining policies is thus
generated by the Cartesian product U

∞. We let D
∞ denote the set of non-increasing

population joining policies for which each component rule uk is such that uk(x) is
non-increasing in x; let S

∞ denote the set of symmetric population joining policies
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for which each of the components rules uk are identical; and we let T
∞ denote the

set of threshold population joining policies, for which each uk is a threshold joining
rule. Observe that T

∞ ⊂ D
∞. If all customers adopt the same joining rule u then, for

conciseness, we denote the resulting population joining policy π = (u, u, u, . . .) ∈ S
∞

by u∞; similarly, if all customers use the same threshold joining rule [g] we denote the
resulting population joining policy by π = [g]∞.

2.3 Main Results

We prove a number of stochastic order results pertaining to the behaviour of the ex-
pected sojourn time of a customer in the system. These results are required in order to
establish the existence, uniqueness, and structure of Nash equilibrium joining policies
for an associated stationary game (which is described in the final section). The method
by which the stochastic orderings are brought together in order to determine the prop-
erties of the Nash equilibrium is already well understood (see Altman (2005) for a
summary of the key steps). However, to the best of our knowledge, there is no gen-
eral checklist characterizing the features (in terms of arrival and departure processes,
queueing discipline etc.) that will guarantee that the results will hold true without hav-
ing to resort to detailed sample path analysis. Furthermore, there is no general method-
ology available for determining an appropriate strategy for constructing the proofs of
the stochastic orderings: the proofs seem to be highly system-specific. The couplings
used in Altman & Shimkin (1998) were simple to construct due to the processor shar-
ing discipline which does not require tracking of the ‘position’ of customers. But for
our system, we find that both the FCFS discipline and the Bernoulli feedback charac-
teristic conspire to make it difficult to identify appropriately coupled sample paths. It
is with these considerations in mind that the coupling machinery of Sections 3.1 and
3.3 have been designed.

Let vk(x, β, π), x∈N, be the sojourn time of Ck in Q, given that at its arrival, x cus-
tomers were already present in the system, the residual service time of the customer
at the server is β > 0, and that future arrivals adhere to the decision rules inferred by
π. Define Vk(x, β, π) to be the expected value of vk(x, β, π). When the service time
has an exponential distribution, the expected sojourn time of a customer that joins
the queue does not depend on the residual service time (if any), and we simply write
vk(x, π) and Vk(x, π) respectively.

Note: indexing of entry queue sizes of the form x ∈ N, x = 0, 1, . . ., or x = 1, 2, . . .
are to be understood as running up to B − 1 whenever B is finite. Also, the interval
[0, B) is interpreted to mean [0, B] if B is finite, and [0,∞) if B is infinite.

Our main results are listed in the rest of this section. Theorems 1 to 4 characterize
the dependence of the expected sojourn time on both x and g, and are mostly proved
by invoking couplings of a non-trivial nature. The game-theoretic results of Theorems
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5 and 6 are proved using a combination of Theorems 1-4, but under the proviso that
the total expected time spent at the server for a customer in Q is less than the ‘cost’ of
balking from the system.

Theorem 1 Consider a GI/G/1 Bernoulli feedback system and let π ∈ D
∞ be any

non-increasing population joining policy. Then, for each x = 1, 2, . . . and β > 0,
V (x + 1, β, π) − V (x, β, π) ≥ (1 − p)E(W ).

The specialization of this result to the case of exponential service times can be found
in Corollary 3.1. Theorem 1 is somewhat less general than its counterpart in Altman
& Shimkin (1998) in that π is restricted to lie in D

∞. The class D
∞ infers that there

is less chance that each customer actually joins the system as the queue length there
increases. Under additional assumptions on the arrival and departure processes, we
can extend our result to another class of policies.

Theorem 2 Consider an M/M/1 Bernoulli feedback system and let π ∈ S
∞ be any

symmetric population joining policy. Then, for each x = 0, 1, 2, . . ., V (x + 1, π) −
V (x, π) ≥ (1 − p)E(W ).

Theorem 3 Consider a GI/G/1 Bernoulli feedback system and let [g]∞ and [g̃]∞ be
symmetric threshold population joining policies with 0 ≤ g < g̃ and g̃ ∈ [0, B).
(i) Suppose g̃ ≤ 1. Then V (0, [g̃]∞) = V (0, [g]∞), and for each x = 1, 2, . . . and
β > 0, V (x, β, [g̃]∞) = V (x, β, [g]∞).
(ii) Suppose g ≥ 1. Then there exists δ0 > 0 such that V (0, [g̃]∞) − V (0, [g]∞) ≥ δ0,
and for each x = 1, 2, . . . and β > 0, there exists δx > 0 such that V (x, β, [g̃]∞) −
V (x, β, [g]∞) ≥ δx.

Theorem 4 Consider a GI/G/1 Bernoulli feedback system and let [g]∞ be a symmet-
ric threshold population joining policy with g > 0. Then V (0, [g]∞) is a continuous
function of g, and, for each x = 1, 2, . . . and β > 0, V (x, β, [g]∞) is a continuous
function of g ∈ [0, B).

Theorem 5 Consider a GI/M/1 Bernoulli feedback system and assume that attention
is restricted to the class D

∞ of non-increasing population joining policies.
(i) If π = (u0, u1, u2, . . . , . . .) ∈ D

∞ is a Nash equilibrium population joining policy,
then each uk is a threshold joining rule (with finite threshold).
(ii) There exists a unique symmetric Nash equilibrium population joining policy π∗ =
(g∗, g∗, g∗, . . .) = [g∗]∞ in the class of policies D

∞.

Theorem 6 Consider an M/M/1 Bernoulli feedback system.
(i) If π = u∞ ∈ S

∞ is a Nash equilibrium population joining policy, then u is a
threshold joining rule (with finite threshold).
(ii) There exists a unique symmetric Nash equilibrium population joining policy π∗ =
(g∗, g∗, g∗, . . .) = [g∗]∞.
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3 Monotonicity in the queue length x

3.1 Monotonicity for a GI/G/1 system

We first consider a GI/G/1 Bernoulli feedback queueing system where each potential
customer uses a joining rule which is a non-increasing function of the queue size just
prior to their arrival. Let x denote the queue size upon joining. We show that, for
x ≥ 1, the expected sojourn time of a joining customer is a strictly increasing function
of x.

Without loss of generality, we focus on a marked customer C that joins the queue
at time t = 0. For k = 1, 2, 3, . . . , , we assume each successive potential customer,
Ck, say, arrives at corresponding epoch Ak, and finds a queue of size X(Ak). Ck has
the option of either joining the queue or departing the system, and joins the queue
with probability uk(X(Ak)), where each uk(x) is a (possibly different) non-increasing
function of x. Note that the presence of a finite buffer B can be incorporated by taking
uk(x) = 0 for x ≥ B.

Let v(x, β, π) denote the sojourn time for customer C who joins the queueing system,
when the queue size just prior to arrival is x ≥ 1, the population joining policy (i.e.
the set of joining rules for later arriving potential customers) is π = (u1, u2, u3. . . . , ),
and when the residual service time for the customer currently in service at time t = 0
is S0 = β > 0. Let V (x, β, π) be the expected value of this quantity.

To compare v(x, β, π) with v(x + 1, β, π), we look at path-wise comparisons of cou-
pled realizations of two queueing processes, say Q and Q̃, in which marked customers
C (resp. C̃) join the queue at time t = 0 when there are already x (resp. x + 1) cus-
tomers in the queue, the population joining policy is π and the current residual service
time is β. We say that at each time t a customer in the Q process is level with a cus-
tomer in the Q̃ process if both have the same position (first, second, third etc.,) in their
respective queues, and we say one customer is ahead of (resp. behind) the other if it
has a position nearer (resp. further from) its server. We show that for each sample path
in the coupled processes, the customer who joins with x in the system leaves either at
the same epoch or at least one service completion before the customer who joins with
x + 1 in the system. Moreover, this second possibility happens on a set of positive
probability, so that V (x, β, π) < V (x + 1, β, π).

The coupling we use here is designed to ensure that both C and C̃ make the same
number of visits to the server in the coupled systems. We saw from the model descrip-
tion in section 2.1 that the evolution of Q (and similarly Q̃) is completely specified by
the sequence of successive inter-arrival times T , service times W , population joining
policy π, joining decision random variables U and feedback random variables F . The
coupling we use is defined in terms of these variables as follows:
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Coupling 1 (i) Consider two processes Q and Q̃ with X(0) = x > 0 and X̃(0) =
y > 0. Couple the systems so that they have the same initial residual lifetime and so
that, taken in the natural order, they have the same sequence of inter-arrival times, the
same sequence of service times, the arriving customers use the same sequence of join-
ing rules and the joining decision random variables take the same sequence of values.
Formally, this means we set S0 = S̃0 = β, T = T̃ , W = W̃ , π = π̃ and U = Ũ .

(ii) Now couple the feedback decision variables as follows. For r = 1, 2, 3 let Fr =
{Fr,1, Fr,2, Fr,3 . . .} denote mutually independent sequences of independent Bernoulli
random variables, each with parameter p.

Use the sequence of values in F1 to determine both the successive feedback deci-
sions for customer C in Q and the successive feedback decisions for C̃ in Q̃, so, for
example, both C and C̃ are fed back after their first service if and only if F1,1 ≤ p.
Thus both C and C̃ are fed back exactly the same number of times in both processes.

Use the sequence of values in F2 to determine the successive feedback decisions for all
other customers in Q. Thus, the first customer in Q other than C to complete service
is fed back if and only if F2,1 ≤ p, the second is fed back if and only if F2,2 ≤ p, etc.

Now consider the other customers in Q̃. By construction, the two processes Q and
Q̃ have the same service completion epochs, at least until one or other is empty for the
first time. During this period, couple the feedback decision for each customer other
than C̃ to be exactly the same as that for the corresponding customer completing at
the same time in Q, except for customers (other than C̃) who complete service at the
same time as C. Say there is such a customer who completes service in Q̃ at the same
moment that C completes its k-th service in Q. Denote this customer by H̃k and de-
note by Hk that customer in Q (if any) which is level with C̃ at that moment. If such a
customer Hk exists, define the feedback decision for H̃k to be the same as the (already
assigned) next feedback decision for Hk in Q. If there is no customer level with C̃
at that moment, then define the feedback decision for H̃k using the value of the k-th
variable in the sequence F3. Once the two processes no longer have the same service
completion epochs, the feedback decisions can be assigned arbitrarily. �

Note that under Coupling 1 a customer opposite C may depart even though C is fed
back, so there may be epochs s when X(s) > X̃(s). As well as showing how the
relative positions of C and C̃ are maintained between their service completion epochs,
the next Lemma shows that if X̃(0) = X(0)+1 then X(s) can never exceed X̃(s)+1.

Lemma 3.1 Consider realizations of the two processes Q and Q̃ under Coupling 1
with y = x + 1, and assume the population follows some non-increasing population
policy π ∈ D

∞. Let τ denote the set of epochs at which C or C̃ (or both) complete
a service and neither have yet departed, and let s and t denote successive epochs in
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C H̃k

C̃Hk

Hk

C

C̃

Figure 1: A possible realization of Q and Q̃ just prior (L.H.S.) and just after (R.H.S.)
C is fed back for the k-th time. C and H̃k are in service on the L.H.S. The feedback
decisions for C and C̃ remain coupled throughout. The feedback decision for H̃k is
coupled with that of Hk if Hk is present, otherwise it is chosen independently; in the
diagram neither are fed back. The next feedback decisions for the other customers in
Q̃ are coupled with those for the parallel customers in Q, and will be reassigned if they
are fed back.

τ ∪ {0}. Then
(i) The positions of C and C̃ relative to each other do not change in (s, t).
(ii) If X̃(s+) ≥ X(s+) then X̃(t) ≥ X(t).
(iii) If X(s+) = X̃(s+) + 1 then X(t) ≤ X̃(t) + 1.

Proof
Consider the processes in the interval (s, t), where any feedback decisions following
the first service completion have been implemented by time s+, but those following
the second service completion have not yet been implemented at t (by virtue of the
‘left-continuity’ of the queue-length process). During the interval, the composition of
each queue changes only at arrival or service completion epochs.
(i): At service completion epochs, the coupling ensures that customers make the same
feedback decision in both processes, so the positions of C and C̃ relative to each other
do not change. At arrival epochs, the arriving customers join behind C and C̃, so
cannot affect their relative positions until the next epoch in τ . Thus the positions of C
and C̃ relative to each other do not change in (s, t).
(ii) and (iii): At service completion epochs, the coupling ensures that the relative queue
sizes remain unchanged. At arrival epochs when the queue lengths are equal, the
coupling of the joining decision variables ensures that the same joining decision is
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taken in both processes. At arrival epochs when one queue is smaller than the other,
the fact that the joining decision rule is a non-increasing function of the size of the
queue, together with the coupling and relation (1), ensures that either the same joining
decision is taken in both processes or the arrival joins the queue in the process with
the smaller queue but does not join in the process with the larger queue. Thus the
difference in the queue sizes can only decrease during (s, t) and once the queue sizes
are equal, they remain equal. In particular, if X(s+) = X̃(s+) + 1 then either X(t) =

X̃(t) or X(t) = X̃(t) + 1, so in either case X(t) ≤ X̃(t) + 1. �

Lemma 3.2 Consider realizations of the two processes Q and Q̃ under Coupling 1
with y = x + 1, and assume the population follows some non-increasing population
joining policy π ∈ D

∞. Let K denote the common number of visits both C and C̃ make
to the server in each realization, and let s1, . . . , sK and s̃1, . . . , s̃K denote the service
completion epochs for C and C̃ respectively. Then X̃(sk) ≥ X(sk) and s̃k ≥ sk for
k = 1, . . . , K.

Proof
For k = 1, . . . , K, let Pk denote the proposition: X̃(sk) ≥ X(sk) and s̃k ≥ sk.

First assume K = 1. At t = 0+, C has x other customers ahead of it in Q while
C̃ has x + 1 customers ahead of it in Q̃, so the position of C in Q is one ahead of that
of C̃ in Q̃. From Lemma 3.1, these relative positions are maintained until C completes
service, so C leaves the system exactly one service completion epoch before C̃. More-
over, X̃(0+) = X(0+) + 1 > X(0+) so again from Lemma 3.1 X̃(s1) ≥ X(s1). Thus
P1 is true.

Now assume Pk is true for some k = 1, . . . , K − 1 for K > 1. Since k < K,
both C and C̃ are fed back after their k-th service. Now C is either level with C̃ at
sk or C is ahead of C̃ at sk. If C is ahead of C̃ at sk, then there may or may not be a
customer in Q level with C̃ at sk. If there is a customer in Q level with C̃ at sk, then
that customer may or may not be fed back at its next service. There are then four cases
to consider.

Case 1: [C is level with C̃ at sk].
Since C is level with C̃ at sk and s̃k ≥ sk, both C and C̃ are fed back together at sk.
Since X̃(sk) ≥ X(sk) and C was fed back with C̃ at sk, C is level with or ahead of
C̃ after being fed back, and X̃(s+

k ) ≥ X(s+
k ). Lemma 3.1 then implies that the next

epoch in τ occurs at sk+1, that C is still either level with or ahead of C̃ at that point
and that X̃(sk+1) ≥ X(sk+1). Finally, C̃ had completed no more than k services at s+

k

so it must have completed no more than k + 1 services at s+
k+1, so s̃k+1 ≥ sk+1.

Case 2: [C is ahead of C̃ at sk and there is no customer in Q opposite C̃ at sk].
From the fact that there is no customer opposite C̃ in Q when C completes service, it
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follows immediately that: (i) X̃(sk) > X(sk), (ii) C must be level with or ahead of
C̃ after being fed back, and (iii) the feedback decision for the customer H̃k in Q̃ who
completes service at sk is determined by the corresponding value in the sequence F3,
independent of the realization for Q. Since X̃(sk) > X(sk), we have X̃(s+

k ) ≥ X(s+
k )

whether H̃k departs or is fed back. Since C is level with or ahead of C̃ at s+
k , Lemma

3.1 implies that the next epoch in τ is at sk+1, that C is still level with or ahead of C̃ at
that point, and that X̃(sk+1) ≥ X(sk+1). Since C was ahead of C̃ at sk and s̃k ≥ sk,
C̃ must have completed at least one less service than C at s+

k , so it must still have
completed at least one less service than C at s+

k+1, giving s̃k+1 > sk+1.

Case 3: [C is ahead of C̃ at sk, Hk is opposite C̃ at sk and is fed back at its next
service].
Since C is ahead of C̃ at sk then, together with s̃k > sk, this implies that C̃ must
have completed say (r − 1) services at s+

k , where (r − 1) < k. Since C is ahead of
C̃ at sk, there is a customer H̃k 	= C̃ in Q̃ who completes service at sk and whose
feedback decision is coupled to be the same as that for Hk, i.e. H̃k is also fed back at
s+

k . Thus X̃(s+
k ) ≥ X(s+

k ). Since there was a customer level with C̃ at sk, C is now
behind C̃ after the feedback. Lemma 3.1 then implies that the next epoch in τ occurs
when C̃ completes service at s̃r and that X̃(s̃r) ≥ X(s̃r). At s̃+

r , C̃ has completed
r ≤ k < K services, so both C̃ and Hk are fed back, giving X̃(s̃+

r ) ≥ X(s̃+
r ). Since

X̃(s̃r) ≥ X(s̃r), C is now ahead of C̃ after the feedback. Lemma 3.1 then implies that
the next epoch in τ occurs when C completes service at sk+1, that C is still ahead of
C̃ at that point, and that X̃(sk+1) ≥ X(sk+1). Since C̃ had completed r ≤ k services
at s̃+

r and has not completed any more services by sk+1, we have s̃k+1 > sk+1.

Case 4: [C is ahead of C̃ at sk, Hk is opposite C̃ at sk and departs at its next ser-
vice].
Since H̃k now departs at sk while C is fed back, we have X(s+

k ) ≤ X̃(s+
k ) + 1 so

either X(s+
k ) ≤ X̃(s+

k ) or X(s+
k ) = X̃(s+

k ) + 1. Since there was a customer level
with C̃ at sk, C is now behind C̃ after the feedback. Let r be as in Case 3. Lemma
3.1 now implies that the next epoch in τ occurs when C̃ completes service at s̃r, and
that X(s̃r) ≤ X̃(s̃r) + 1, so either X(s̃r) ≤ X̃(s̃r) or X(s̃r) = X̃(s̃r) + 1. At s̃+

r ,
C̃ has completed r ≤ k < K services and so is fed back, while Hk departs just like
H̃k, so either X(s̃+

r ) ≤ X̃(s̃+
r ) − 1 or X(s̃+

r ) = X̃(s̃+
r ), i.e. X̃(s̃+

r ) ≥ X(s̃+
r ). Thus

C̃ is either fed back level with C or behind C. Lemma 3.1 now implies that the next
epoch in τ is at sk+1, that C is still level with or ahead of C̃ at that point, and that
X̃(sk+1) ≥ X(sk+1). Since C̃ had completed less than k services at s+

k and has only
completed one service between sk and sk+1, it has completed at most k + 1 services
by s+

k+1, and so s̃k+1 ≥ sk+1.

Thus in all cases Pk implies Pk+1. Since P1 is true (using a similar argument for
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establishing P1 when K = 1), the result follows by induction. �

Theorem 1
Consider a GI/G/1 Bernoulli feedback system and let π ∈ D

∞ be any non-increasing
population joining policy. Then, for each x = 1, 2, . . . and β > 0, V (x + 1, β, π) −
V (x, β, π) ≥ (1 − p)E(W ).

Proof
Consider realizations of the two processes Q and Q̃ as in Coupling 1. Assume that
there are initially x customers ahead of C in Q and y = x+1 customers ahead of C̃ in
Q̃ and that customers in both Q and Q̃ are using the same non-increasing population
joining policy π ∈ D

∞. From Lemma 3.2, C completes its first service at s1 (one
customer ahead of C̃), and completes all its remaining services either level with C̃ or at
least one customer ahead. The probability that C (and C̃) depart after just one service
is (1 − p), and the expected extra time C̃ spends in Q̃ in that case is E(W ). Thus,
taking expectation over all possible realizations, we have V (x+1, β, π)−V (x, β, π) ≥
(1 − p)E(W ). �

3.2 Monotonicity for a GI/M/1 system

When the service time has an exponential distribution, the residual service time of a
customer in service at an arrival epoch has exactly the same exponential distribution as
the service time of a customer starting service at that point. Thus the expected sojourn
time of a customer that joins the queue does not depend on the residual service time
of the customer (if any) in service on joining. In this case we can write V (x, π) for
the expected sojourn time for customer C when the queue size on joining is x and the
population joining policy is π = (u1, u2, u3. . . .).

Corollary 3.1
Consider a GI/M/1 Bernoulli feedback system and let π ∈ D

∞ be any non-increasing
population joining policy. Then, for each x = 0, 1, 2, . . ., V (x + 1, π) − V (x, π) ≥
(1 − p)E(W ).

Proof
The proof for x = 1, 2, . . . follows directly from Theorem 1 since the expected sojourn
times are independent of β. Moreover, the result for x = 0 can be proved in exactly
the same way as the results for x > 0 in section 3.1, since we can now arrange the
coupling so that the residual service time of the customer in service in Q̃ at t = 0 has
exactly the same value as the service time of the customer joining and entering service
in Q at t = 0. �
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3.3 Monotonicity for an M/M/1 system

When the arrival process forms a stationary Poisson process we can extend the class of
population joining rules for which Theorem 1 applies. Consider an M/M/1 Bernoulli
feedback system where potential customers all use the same joining rule u, where u(x)
is a general (not necessarily non-increasing) function of the queue size x on arrival. We
again show that the expected sojourn time of a customer that joins a non-empty queue
is a strictly increasing function of the queue size on joining.

Again let v(x, π) denote the sojourn time for customer C when the queue size on
joining is x ≥ 1, when the symmetric population joining policy (for arriving potential
customers) is π = u∞, and let V (x, π) be the expectation of this quantity. Again we
compare v(x, π) with v(x + 1, π), by looking at path-wise comparisons of coupled
realizations of two queueing processes, say Q and Q̃, in which marked customers C
(resp. C̃) join the queue at t = 0 when there are already x (resp. x + 1) customers in
the queue.

The coupling we use is, arguably, more complex than Coupling 1, but is again de-
signed to ensure that both C and C̃ make the same number of visits to the server in the
coupled systems.
For fixed u, the evolution of Q̃ is completely specified as before by the sequence of
successive inter-arrival times T̃ , service times W̃ , joining decision random variables Ũ
and feedback random variables F̃ . The coupled evolution of Q can then be described
informally as follows: Consider a realization of Q̃ in which C̃ makes K visits to the
server. For K = 1, 2, 3, . . . let s̃1, . . . , s̃K denote the corresponding service comple-
tion epochs of C̃. We “freeze” the process Q until C̃ is level with C and then couple
the two processes to have the same arrival epochs, service completion epochs, arrival
decision variables and feedback decision variables until both C and C̃ complete their
first service. By construction, when C̃ is fed back for the first time, there are at least
as many customers ahead of it as there are ahead of C when it is fed back for the first
time. To extend the realization until the next service completion epoch for C, again
“freeze” the process Q until C̃ is again level with C and then re-couple them until both
C and C̃ complete their next service. This procedure can be continued iteratively until
both C and C̃ depart.

We can define this coupling more formally as follows:

Coupling 2
Let s1, . . . , sK and s̃1, . . . , s̃K be the successive service completion epochs of cus-
tomers C and C̃, respectively, and set s0 = s̃0 := 0. For some k ∈ {0, . . . , K − 1},
assume that we have constructed Q up to the epoch s+

k , X̃(s̃k) ≥ X(sk) and s̃k ≥ sk.

Set b = X̃(s̃k)−1−(X(sk)−1) = X̃(s̃k)−X(sk), which for k ≥ 1 (resp. k = 0) rep-
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resents the difference between the number ahead of C and the number ahead of C̃ as
they are fed back for the k-th time (resp. as they join their respective systems at time 0).

Now observe Q̃ from s̃+
k until b services have taken place and then couple Q with

it. Let r1, r2, . . . denote the arrival epochs of successive customers in C̃ after s̃k and
t1, t2, . . . the successive service completion epochs. Assume that there have been e
arrivals and f services in Q̃ prior to s̃+

k , and that there are a arrivals and b service
completions in Q̃ in the interval (s̃k, tb] and c arrivals and d service completions in
the interval (tb, s̃k+1], so d = X(s+

k ) and tb+d = s̃k+1. Then starting at time s+
k ,

we construct the realization of Q over the interval (sk, sk + tb+d − tb] as follows. If
c > 0, then there are taken to be c arrivals in Q in this interval, with arrival epochs
sk + ra+1− tb, . . . , sk + ra+c − tb and joining decision parameters Ue+a+1, . . . , Ue+a+c.
There are taken to be d service completions in Q in this interval, with service com-
pletion epochs sk + tb+1 − tb, . . . , sk + tb+d − tb and feedback decision parameters
Ff+b+1, . . . , Ff+b+d.
The coupling after sK is arbitrary.

�

unmarked customer
service epoch for

arrival epoch

marked customer
service epoch for

KEY:

sk sk+1 sk+2

s̃k s̃k+1 s̃k+2

tbk
tbk+1

Figure 2: Possible realizations of Q (bottom) and Q̃ (top) under Coupling 2. The dia-
gram shows the time horizons near the k-th service transition of the marked customer
in each of the two processes. The service epochs for which C̃ becomes level with C
after the k-th and (k + 1)-th services of C̃ are given by tbk

and tbk+1
, respectively. The

arrival epochs in Q̃ closest to tbk
and tbk+1

are also depicted.
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Theorem 2
Consider an M/M/1 Bernoulli feedback system and let π ∈ S

∞ be any symmetric
population joining policy. Then, for each x = 0, 1, 2, . . ., V (x + 1, π) − V (x, π) ≥
(1 − p)E(W ).

Proof
Consider realizations of the two processes Q and Q̃ under Coupling 2. Assume that
there are initially x customers ahead of C in Q and x + 1 customers ahead of C̃ in Q̃
and that all customers in both Q and Q̃ use the decision rule inferred by the symmetric
policy π ∈ S

∞.

For k = 1, . . . , K, let Pk denote the proposition: X̃(s̃k) ≥ X(sk) and s̃k ≥ sk.

Assume that K > 1 and that Pk holds for some k ∈ {1, . . . , K − 1}.

Due to the coupling, the position of C in Q at s+
k is exactly the same as that of C̃ in Q̃

at t+b and their relative positions stay the same over the respective intervals (sk, sk+1]

and (tb, s̃k+1]. The last service completion in Q̃ in the interval (tb, s̃k+1] occurs when C̃
completes its next service, so C completes its next service at the corresponding epoch
and sk+1 = sk + tb+d − tb. At that point C is either fed back in the same way as C̃ if
k + 1 < K or C departs like C̃ if k + 1 = K.

The arrival, service completion, and feedback processes, for Q over the interval (sk, sk+

tb+d − tb] completely mirror those in Q̃ over the interval (tb, tb+d]. However, the num-
ber X̃(t+b ) in Q̃ at t+b is, by construction, at least as great as X(s+

k ) in Q. Furthermore,
consider any t ∈ (0, tb+d − tb). Then while X̃(tb + t) > X(sk + t), the actual queue
size dependent joining decision in Q may differ from the corresponding decision in Q̃;
however, if for some t∗ ∈ (0, tb+d − tb) the queue sizes are the same (i.e. X̃(tb + t∗) =
X(sk + t∗)), then the joining decisions will be the same for all t ∈ [t∗, tb+d − tb),
and hence the queue sizes will stay equal over the corresponding intervals in Q and Q̃.
Thus, by construction, X̃(s̃k+1) ≥ X(sk+1). Finally, by assumption, s̃k ≥ sk and by
construction tb ≥ s̃k, so that s̃k+1 = tb+d = tb + (tb+d − tb) ≥ sk + (tb+d − tb) = sk+1.
Thus Pk+1 also holds.

By construction, X̃(s̃0) = X̃(0) = x + 1 > x = X(0) = X(s0), C starts b = 1

customer ahead of C̃ in their respective systems, and completes its first service at
s1 = s̃1 − t1 where t1 is the service completion epoch of the first customer served in Q̃
after s̃0. Using a similar argument to the one in the preceding paragraph, it also follows
that X̃(s̃1) ≥ X(s1). Thus P1 holds here (and in the case where K = 1). Hence, and
in particular, s̃K ≥ sK .

The probability that C (and C̃) depart after just one service is (1 − p), and the ex-
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pected extra time C̃ spends in Q̃ in that case is E(W ).

Now, for each k, the memoryless property of the Exponential distribution implies that
the value ra+1 − tb used in constructing the arrival epochs for the interval (sk, sk+1)
is again an independent observation from the same Exponential inter-arrival distribu-
tion. Thus, when we take expectation over all possible realizations of Q̃ the coupling
also generates an expectation over all possible realizations of Q with just the right
distributions for the inter-arrival (and service) times. Thus V (x + 1, π) − V (x, π) ≥
(1 − p)E(W ). �

4 Monotonicity and continuity in the threshold g

In this section we again consider a GI/G/1 Bernoulli feedback queueing system but
now assume all customers use the same threshold joining rule [L, q]. Recall from sec-
tion 2.2 that the rule can be written in compact form as [g], where g = L + q. We
consider the dependence of the expected sojourn time on the joining rule and show
that it is a continuous function of g, which is constant for g ∈ [0, 1], and is strictly
increasing for g ≥ 1.

To motivate the population joining rule, consider what would happen if, instead of join-
ing the feedback queue, customers could join an alternative queueing system where the
expected sojourn time was fixed at θ. We assume customers always join the feedback
system when it is empty on arrival. However, if the queue size on arrival is x ≥ 1,
we assume that each arriving customer joins the feedback queue only if their expected
sojourn time is less than the fixed sojourn time in the alternative queue. In this case,
the results of the previous section mean that each customer will use a threshold joining
rule. Our focus here is on the behaviour of the expected sojourn time of an individual
customer that does join the feedback queue when all the other customers are using the
same threshold joining rule [g].

Now let g = L + q and g̃ = L̃ + q̃ denote the threshold values for two threshold
joining rules with g < g̃, so that either L < L̃ or L = L̃ and q < q̃. Let v(x, β, [g]∞)
(resp. v(x, β, [g̃]∞)) denote the sojourn time for a customer who joins when there are
already x ≥ 1 customers in the system, when all other customers are using joining rule
[g] (resp.[g̃]) and the customer in service on joining has residual service time β. Let
the expected value of v(x, β, [g]∞) (resp. v(x, β, [g̃]∞)) be denoted by V (x, β, [g]∞)
(resp. V (x, β, [g̃]∞)).

To compare v(x, β, [g]∞) and v(x, β, [g̃]∞), we again compare coupled realizations
of two processes. We show that in the coupled processes the customer who joins the
system in which customers use [g] leaves either at the same epoch or at least one ser-
vice completion epoch before the customer who joins the system in which customers

17



use [g̃]. We then show that this second possibility happens on a set of positive proba-
bility, so that V (x, β, [g̃]∞) > V (x, β, [g]∞).

Assume that there are initially x customers ahead of both C in Q and C̃ in Q̃. As-
sume also that all other customers in Q use the same threshold joining policy π = [g]∞

and all other customers in Q̃ use the same threshold joining policy π = [g̃]∞, where
g̃ > g.

Lemma 4.1 Consider realizations of the two processes Q and Q̃ under Coupling 1
with y = x. Let τ denote the set of epochs at which C or C̃ (or both) complete a
service and neither have yet departed, and let s and t denote successive epochs in
τ ∪ {0}. Then
(i) the positions of C and C̃ relative to each other do not change in (s, t)

(ii) if X̃(s+) ≥ X(s+) then X̃(t) ≥ X(t)

(iii) if X(s+) = X̃(s+) + 1 then X(t) ≤ X̃(t) + 1.

Proof
The argument is exactly the same as that for Lemma 3.1, except for the part relating to
the changes in the respective queue sizes at arrival epochs.

Under the given policies a customer arriving in Q at z when the queue size is x joins if
and only if either x < L or x = L and U ≤ q, and a customer arriving in Q̃ at z when
the queue size is x joins if and only if either x < L̃ or x = L̃ and U ≤ q̃, where either
L < L̃, or L = L̃ and q < q̃.

If X(z) < X̃(z), then X(z+) ≤ X̃(z+), whatever the respective joining decisions.
If X(z) = X̃(z), then the customer will join in Q if and only if either X(z) < L or
X(z) = L and U ≤ q. Since X(z) = X̃(z) and either L < L̃ or L = L̃ and q < q̃,
the customer joining in Q implies either X̃(z) < L̃ or X̃(z) = L̃ and U ≤ q̃, so the
customer must also join in Q̃. Thus, at each arrival epoch in (s, t), X(z) ≤ X̃(z)

implies X(z+) ≤ X̃(z+), giving (ii).

Similarly, if X(z) = X̃(z)+1, then the customer will join in Q only if the customer in
Q̃ also joins, so the customers either join in both queues (giving X(z+) = X̃(z+)+1),
neither queue, or just in Q̃ (giving X(z+) = X̃(z+)). Combined with the argument
used to establish (ii), this gives (iii). �

Lemma 4.2 Consider realizations of the two processes Q and Q̃ under Coupling 1
with y = x. Let K denote the common number of visits both C and C̃ make to
the server in each realization, and let s1, . . . , sK and s̃1, . . . , s̃K denote the service
completion epochs for C and C̃ respectively. Then X̃(sk) ≥ X(sk) and s̃k ≥ sk for
k = 1, . . . , K.
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Proof
For k = 1, . . . , K, let Pk denote the proposition: X̃(sk) ≥ X(sk) and s̃k ≥ sk.

First assume K = 1. At t = 0, C and C̃ are level with x customers ahead of them.
From Lemma 4.1, these relative positions are maintained until C completes service, so
s1 = s̃1. Moreover, X̃(0+) = X(0+) so again from Lemma 4.1 (ii), X̃(s1) ≥ X(s1).
Thus P1 is true.

The proof for the case K > 1 follows in exactly the same way as in Lemma 3.2,
except that we invoke Lemma 4.1 instead of Lemma 3.1. �

Theorem 3 Consider a GI/G/1 Bernoulli feedback system and let [g]∞ and [g̃]∞ be
symmetric threshold population joining policies with 0 ≤ g < g̃ and g̃ ∈ [0, B).
(i) Suppose g̃ ≤ 1. Then V (0, [g̃]∞) = V (0, [g]∞), and for each x = 1, 2, . . . and
β > 0, V (x, β, [g̃]∞) = V (x, β, [g]∞).
(ii) Suppose g ≥ 1. Then there exists δ0 > 0 such that V (0, [g̃]∞) − V (0, [g]∞) ≥ δ0,
and for each x = 1, 2, . . . and β > 0, there exists δx > 0 such that V (x, β, [g̃]∞) −
V (x, β, [g]∞) ≥ δx.

Proof
Consider realizations of the two processes Q and Q̃ under Coupling 1. Assume that
there are initially x customers ahead of both C in Q and C̃ in Q̃. Assume also that all
other customers in Q are using the same threshold population joining policy π = [g]∞

and all other customers in Q̃ are using the same threshold joining policy π = [g̃]∞,
where g̃ > g.

First suppose that 0 ≤ g < g̃ ≤ 1. The sojourn times of the marked customers in
the two processes will differ only if there is a disparity in the queue lengths during
their stay in the systems. A customer is admitted into the queue of either process only
if the queue is empty just prior to arrival. Clearly, however, the marked customer will
have left by then, thus establishing (i).

Let s1 be as defined in Lemma 4.2. Now suppose that 1 ≤ g < g̃, and let Rx de-
note the set of realizations for which X(s1) = L and X̃(s1) = L + 1. If L < L̃,
then Rx would include for example realizations in which no customers arrived during
the service periods of the first x customers, all these x customers departed following
service, L customers arrived during the (first) service period for C (and hence C̃), and
q < UL < 1. If L = L̃, then Rx would include for example realizations in which
no customers arrived during the service periods of the first x customers, all these x
customers departed following service, L customers arrived during the (first) service
period for C (and hence C̃), and q < UL < q̃. Thus Rx has positive probability. Note
that the event Rx is independent of the number of visits K that C and C̃ make to the
server and that P (K = 2) = p(1 − p).
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For realizations in Rx with K = 2, C departs Q at s2 one service period ahead of
C̃ and the expected extra time C̃ spends in Q̃ in that case is E(W ). From Lemma 4.2,
in all other realizations C completes all its services either level with C̃ or at least one
service period ahead. Thus, taking expectation over all possible realizations, we have
V (x, β, [g̃]∞) − V (x, β, [g]∞) ≥ p(1 − p)P (Rx)E(W ) = δx > 0 and with a slight
modification of the proof to establish that V (0, [g̃]∞) − V (0, [g]∞) ≥ δ0.

�

We now introduce a third coupling which we will use to show that the expected so-
journ time V (x, β, π) is continuous in g for symmetric threshold policies π = [g]∞.
The coupling is designed to ensure that the queue length in Q̃ is no less than that of Q.

Coupling 3 Set S0 = S̃0 = β, T = T̃ , W = W̃ , U = Ũ , F = F̃ . �

Under Coupling 3, the successive arrival epochs Ak and Ãk are the same in both sys-
tems; the successive service completion epochs Sk and S̃k are the same, at least until
one or other system is empty; and the successive feedback variables are the same.
However, although the successive joining variables Uk and Ũk are the same, the suc-
cessive arrival joining decisions will not necessarily be the same. Ck joins Q if and
only if Uk ≤ uk(X(Ak)), and similarly for C̃k. Thus the arrival joining decisions may
differ in cases when the queue sizes X(Ak) and X̃(Ak) differ, or when the queue sizes
are the same but the actions specified by the decision rules uk and ũk differ.

Now consider realizations of the processes in Q and Q̃ under Coupling 3, with g =
L + q and g̃ = L + q̃, such that 0 ≤ q < q̃ < 1, such that g̃ ∈ [0, B). This means
that service and arrival events are identical under both processes, except that at queue
length L an arriving customer in Q̃ has a probability (q̃ − q) of being accepted when
the corresponding customer is rejected in Q. The strategy will be to construct an upper
bound on V (x, β, [g̃]∞)− V (x, β, [g]∞) which can also be shown to tend to 0 as g̃ − g
tends to 0.

Theorem 4 Consider a GI/G/1 Bernoulli feedback system and let [g]∞ be a symmet-
ric threshold population joining policy with g ∈ [0, B). Then V (0, [g]∞) is a continu-
ous function of g, and, for each x = 1, 2, . . . and β > 0, V (x, β, [g]∞) is a continuous
function of g.

Proof
Consider realizations of the two processes Q and Q̃ under Coupling 3, and policies
[g]∞ and [g̃]∞, respectively, where g and g̃ are as defined in the paragraph preceding
the statement of this theorem. Assume that there are initially x customers ahead of C
and C̃ in their respective systems. From Theorem 3 part (i), continuity holds trivially
on the interval [0,1]. Thus assume that 1 ≤ g < g̃. By the coupling, C and C̃ complete
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their first service at the same epoch (s1 = s̃1). For k = 1, 2, . . ., let Ek denote the set
of realizations for which C and C̃ complete their first k services at the same epochs
(so s1 = s̃1, . . . , sk = s̃k) but complete their (k + 1)-st service at different epochs
(sk+1 	= s̃k+1). Let E0 denote the remaining set of realizations for which C and C̃
complete all their services at the same epochs, so E0, E1, . . . form a partition of the set
of all possible realizations.

Because the two systems start in identical initial states and are coupled to have the
same sequence of inter-arrival and service times, a realization in Ek (k ≥ 1) occurs
only if C is fed back at least k times, C and C̃ have exactly the same service comple-
tion epochs sr, r = 1, . . . , k, and there is at least one arrival in the period (sk−1, sk)

who joins the system in Q̃ but not in Q; i.e. this customer arrives when there are L in
both systems and has a joining decision variable U with q < U ≤ q̃.

Let E1
k denote the event that C is fed back at least k times and C and C̃ have ex-

actly the same first k service completion epochs sr, r = 1, . . . , k. Let E2
k denote the

event that there is at least one arrival in the period (sk−1, sk) who joins the system in
Q̃ but not in Q, and let D denote the difference in the sojourn times of C and C̃. Then
Ek ⊂ E1

k ∩ E2
k so P (Ek) ≤ P (E2

k |E1
k)P (E1

k) and E(D) =
∑∞

k=1 E(D|Ek)P (Ek) ≤∑∞
k=1 E(D|Ek)P (E2

k |E1
k)P (E1

k).

Given that Ek happens, any difference in the sojourn time is due only to the differ-
ence between their sojourn times from sk onwards. Since there can be at most L + 1
customers in each system, the expected time C spends in the system between each
service completion epoch is at most (L + 1)E(W ) and the expected number of passes
through the system after sk is 1/(1 − p), so the expected sojourn time of C from sk

onwards is no greater than (L + 1)E(W )/(1 − p). Arguing similarly for C̃, E(D|Ek)
is at most 2(L + 1)E(W )/(1 − p).

Also, E1
k occurs only if C is fed back at least k times, so P (E1

k) ≤ pk.

Finally, we derive a bound on P (E2
k |E1

k) as follows. Consider an arrival process that
starts with an arrival at time t = 0. Let Z denote a random variable independent of the
arrival process whose distribution is the same as that of the sum of L + 1 independent
service times, and let Y denote the number of arrivals in the closed interval [0, Z].
Clearly Y is almost surely finite (Feller 1966) so

∑∞
r=0 P (Y = r) = 1.

Now consider a realization in E1
k , so C and C̃ are both fed back together to the end

of their respective queues at sk−1 = s̃k−1 and have the same k-th service completion
epoch sk = s̃k. Since the population joining rules are threshold rules with threshold
values of the form g = L + q and g̃ = L + q̃, the total number in each queue will be
at most L + 1 and so the time sk − sk−1 until their next service completion will be no
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more than the sum of L + 1 independent service times and so will be stochastically no
greater than Z. Moreover, the first subsequent arrival will occur after sk−1 so the num-
ber of arrivals in [sk−1, sk] will be stochastically smaller than the number of arrivals in
the interval [0, sk − sk−1] for an arrival process that starts with an arrival at t = 0, and
this will in turn be stochastically no greater than Y . Thus if M denotes the number
of arrivals to (both) Q and Q̃ in [sk−1, sk], then M is stochastically smaller than Y .
Since [1 − (q̃ − q)]Y is strictly decreasing in Y (by noting that [1 − (q̃ − q)] < 1),
E([1 − (q̃ − q)]M) ≥ E([1 − (q̃ − q)]Y ).

Let U1, U2, . . . be a sequence of independent random variables each with a Uniform
distribution on (0, 1]. Think of Ur as the joining variable of the r-th arrival after sk−1.
Now given E1

k occurs, E2
k fails to occur if all joining decisions are the same in both

systems in the interval [sk−1, sk], which will follow if Ur does not lie in the interval
(q, q̃] for the r-th arrival in the interval, r ≥ 1, since X(s+

k−1) = X̃(s̃+
k−1). Thus, using

the fact that the Ur are independent of all other variables, we have that for a given q
and q̃,

1 − P (E2
k |E1

k) ≥ P (M = 0) +
∞∑

r=1

P (M = r,
r⋂

j=1

{Uj /∈ (q, q̃]})

= P (M = 0) +
∞∑

r=1

P (M = r)P (
r⋂

j=1

{Uj /∈ (q, q̃]})

= P (M = 0) +
∞∑

r=1

{1 − (q̃ − q)}rP (M = r)

=
∞∑

r=0

(1 − (q̃ − q))rP (M = r)

=
∞∑

r=0

(1 − (g̃ − g))rP (M = r)

= E[(1 − (g̃ − g))M ].

It follows that P (E2
k |E1

k) ≤ 1−E[(1− (g̃−g))M ] ≤ 1−E[(1− (g̃−g))Y ]. However,
|(1 − (g̃ − g))Y | ≤ 1 and (1 − (g̃ − g))Y −→ 1 as g̃ − g → 0 almost surely (using
the fact that Y is almost surely finite). Hence, by the dominated convergence theorem,
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E[(1 − (g̃ − g))Y ] −→ 1 as g̃ − g −→ 0, and thus P(E2
k |E1

k) −→ 0 also. Thus

E(D) =
∞∑

k=1

E(D|Ek)P (Ek)

≤
∞∑

k=1

E(D|Ek)P (E2
k |E1

k)P (E1
k)

≤ [1 − E([1 − (g̃ − g)]Y )][2(L + 1)E(W )/(1 − p)]
∞∑

k=1

pk

→ 0 as g̃ − g → 0.

�

5 Nash equilibrium joining policies

We have so far looked at the effect of joining decisions on the sojourn time for an iso-
lated Bernoulli feedback queue. We now assume that the cost of balking upon arrival
to Q is some constant value θ. We can think of θ as the time spent (or, alternatively, the
cost of) using a ‘private’ or self-service system which is slower than Q, in the sense
that θ is greater than the total expected time spent at the server for each customer in Q.
More precisely, it will be assumed that 1/μ(1 − p) < θ; this condition says that it is
always optimal for a customer to join Q if there are no customers in the system upon
arrival provided that no other customers join the system in the future. The joining de-
cision depends only on the observed number of customers at Q on arrival. Customers
who join Q are not permitted to renege during their sojourn, nor are those who balk
permitted to join Q at a later stage.

We consider first what happens when customers make their own individual joining
decisions and each customer is only interested in minimizing their own expected so-
journ time, or cost. Due to the Bernoulli feedback characteristic, the sojourn time of
a particular customer in Q may be affected by the number of customers in the queue
during its sojourn, which in turn is affected by the decisions of subsequent arriving cus-
tomers. This problem fits into a non-cooperative game theoretic framework. We derive
the Nash equilibrium solution for the state dependent stationary game that arises and
show that under this regime, the joining rule for each customer has a particular (possi-
bly randomized) threshold form.

The case of multiple customer classes is also considered. Each customer is a mem-
ber of precisely one of several customer classes, where each class is characterized by
their own distinct value of θ.
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5.1 Single-Type Nash equilibrium

For customers who join Q, the sojourn time is given by the time interval between
arrival at, and departure from, the system. For a GI/M/1 Bernoulli feedback system
the expected sojourn time depends only on the population joining policy and the queue
size on joining. Consider a customer Ck who arrives to find x customers already in
Q when the population joining policy is π. Let Vk(x, π) denote the expected sojourn
time for customer Ck if they decide to join the system when there are already x in the
system and the population joining policy is π. The overall expected time/cost spent to
customer Ck if it invokes the joining rule uk is

uk(x)Vk(x, π) + (1 − uk(x))θ.

Consider an arbitrary population joining policy π = (u0, u1, u2, . . .). Each cus-
tomer wishes to minimize their own expected sojourn time, or cost, in the light of the
actions of other customers. The expected cost of customer Ck if they join Q when the
queue size is x is Vk(x, π) and their expected cost if they decide to balk is θ. Thus we
follow Ben-Shahar et al. (2000) in defining a joining rule uk to be a best response for
customer Ck against the policy π if:

uk(x) =

⎧⎨
⎩

1 if Vk(x, π) < θ
qx if Vk(x, π) = θ
0 if Vk(x, π) > θ

(4)

where 0 ≤ qx ≤ 1 is arbitrary. A population joining policy π = (u0, u1, u2, . . .) is said
to be a Nash equilibrium if, for every k ∈ N, uk is a best response for Ck against π.
Thus no customer can gain by changing their own joining rule while other customers
continue to use the Nash equilibrium policy. More precisely, for arbitrary k ∈ N, the
overall cost to Ck cannot be further minimized by replacing uk with another joining
rule.

Theorem 5 Consider a GI/M/1 Bernoulli feedback system and assume that attention
is restricted to the class D

∞ of non-increasing population joining policies.
(i) If π = (u0, u1, u2, . . . , . . .) ∈ D

∞ is a Nash equilibrium population joining policy,
then each uk is a threshold joining rule (with finite threshold).
(ii) There exists a unique symmetric Nash equilibrium population joining policy π∗ =
(g∗, g∗, g∗, . . .) = [g∗]∞ in the class of policies D

∞.

Proof
Let π = (u0, u1, u2, . . . , . . .) be a non-increasing population joining policy. From
Corollary 3.1 we have that, for each k ∈ N, Vk(x, π) is a strictly increasing function
of x ∈ N, with Vk(x, π) → ∞ as x → ∞.

Further, Theorem 3 and Theorem 4 together imply that Vk(x, [g]∞) is constant for
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g ∈ [0, 1], strictly increasing in g ∈ [1, B), and continuous for g ∈ [0, B), for each
k ∈ N and x ∈ N.

Without loss of generality, we focus attention on customer C0, and consider the point-
to-set mapping

G∗(g) = {g′ ∈ [0, B] : [g′] is optimal for C0 against [g]∞}.

If it were the case that V0(n, [0]∞) = θ for some n ≥ 0, then V0(n, [g]∞) = θ for
any g ∈ (0, 1] also, due to the constancy of V0(·, [g]∞) in this region. However, this
would imply that the graph of G∗(·) would include the set of points in the box with
corners (0, n), (0, n + 1), (1, n + 1), and (1, n). Non-intersection of this box with
the line of unit slope, with the possible exception of (1, n) in the case n = 1, can be
guaranteed provided that V0(0, [0]∞) < θ; however, this is equivalent to the condition
that 1/μ(1− p) < θ. The rest of the proof is similar to that of Theorem 1 from Altman
& Shimkin (1998). �

The results of Theorem 5 are somewhat less general than their counterparts in Alt-
man & Shimkin (1998) in that π is restricted to lie in D

∞. The class D
∞ infers that

there is less chance that each customer enters Q as the queue length there increases
(which perhaps is not unreasonable). Nevertheless, we find that we can extend our
result under additional assumptions on the arrival process to the class of S

∞.

Theorem 6 Consider an M/M/1 Bernoulli feedback system.
(i) If π = u∞ ∈ S

∞ is a Nash equilibrium population joining policy, then u is a
threshold joining rule (with finite threshold).
(ii) There exists a unique symmetric Nash equilibrium population joining policy π∗ =
(g∗, g∗, g∗, . . .) = [g∗]∞.

The proof of Theorem 6 is exactly the same as Theorem 5, except that it invokes
Theorem 2 rather than Corollary 3.1.

5.2 Multi-type heterogeneous Nash equilibria

5.2.1 Notational Set-up and Existence of Nash Equilibria

We now extend the model to incorporate a finite number of customer types, each of
which is characterized by its own quality of service parameter. The set-up will be
similar to that used in Ben-Shahar et al. (2000).

Customers belong to one of a finite set of types indexed by I = {1, 2, . . . , I}.
Customers of type i ∈ I attempting to enter Q constitute a Poisson arrival process
with rate λi, independently of all other customer types, and

∑
i∈I λi = λ. Thus, the

probability that an arriving customer is of type i is given by λi/λ, independently of all
other customers. The quality of service parameter for type i customers is denoted by
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θi, and θi 	= θj for all i, j ∈ I such that i 	= j. For a customer C, say, who is of type i,
the decision rule that governs its entry behaviour is exactly that of (4) except that θ is
replaced by θi.

A (type-)homogeneous policy is defined such that all customers of the same type
adhere to the same decision rule.

Let H
∞ denote the set of (type-)homogeneous policies.

A (type-)homogeneous threshold policy is one in which, for each i ∈ I, [gi] is the
threshold decision rule that is implemented by type i customers. Thus the set of all
threshold homogeneous policies is generated by H

∞ ∩ T
∞. In view of the fact that

customers of different types arrive according to independent Poisson streams, we can
equivalently represent any policy in H

∞ ∩ T
∞ by an I-tuple g = (g1, g2, . . . , gI).

Thus H
∞ and H

∞ ∩ T
∞ generalize symmetric, and symmetric threshold, policies,

respectively, from the case of a single customer type (I = 1) to that of multiple cus-
tomer types (I > 1). The extension of the previous results for the existence of the
Nash equilibrium population joining policy are presented below.

Theorem 7 There exists at least one homogeneous Nash equilibrium population join-
ing policy for each of the following cases:
i) the GI/M/1 system within the class D

∞;
ii) the M/M/1 system within the class U

∞.
Furthermore, in both cases the policy is threshold.

Proof
The proof of Theorem 7 is almost exactly the same as that for Theorem 4 of Ben-
Shahar et al. (2000). �

It is unclear, at this stage, whether it is generally the case that the Nash equilibrium
is unique. However, numerous examples for the case I = 2 were investigated, and
for each one of these the Nash equilibrium was found to be unique. An analogue of
the uniqueness proof used in Ben-Shahar et al. (2000) (and, in particular, Lemmas 11
and 13 of their paper) does not appear to be applicable to our system. It is our view
that the construction of an alternative proof would require, at the very least, a much
better understanding of the “second order” properties of the expected sojourn time (i.e.
rate of change with respect to entry state and population joining rule parameters) and
how such properties would relate to the structure of the point-to-set map that yields the
best response individual joining decision rule(s) with respect to the population joining
policy.
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5.2.2 Computational Results

In this section we present two examples of the computation of the Nash equilibria in
the case I = 2 for the M/M/1 system. Define g̃2(g1) to be the optimal threshold for
type 2 customers when type 1 customers adhere to the joining rule inferred by the
threshold g1. Similarly, define g̃1(g2) to be the optimal threshold for type 1 customers
when type 2 customers use the joining rule inferred by g2. These quantities can be
calculated using a modified version of the algorithm implied by Lemma 4 of Altman
& Shimkin (1998). By plotting the two functions on the same axes, it is clear to see
that the homogeneous threshold policy occurs at their intersection. The equilibrium
points can either be ascertained by visual inspection of the graph (for non-randomized
components) or by a “cobweb”-like algorithm (implicitly used in Ben-Shahar et al.
(2000)) to obtain them to any desired level of precision.

Example 1
Parameter values are given by λ1 = 15, λ2 = 12, μ = 20, θ1 = 0.33, θ2 = 0.4,
p = 0.62, and B = 6.
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optimal g1 as function of g2
optimal g2 as function of g1

Figure 3: Plot of optimal thresholds with Nash equilibrium at (g1, g2) = (2, 3).
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Example 2
Parameter values are given by λ1 = 1.5, λ2 = 4, μ = 5, θ1 = 1.74, θ2 = 1.5, p = 0.5,
and B = 8.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

 

 
optimal g1 as function of g2 
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Figure 4: Plot of optimal thresholds with Nash equilibirum at (g1, g2) = (5, 3.0824).

6 Acknowledgements

The first author wishes to acknowledge the financial support of the Nuffield Foundation
under Grant no. NAL/00721/G.

Appendix

Suppose that type 1 customers adhere to policy [g1]
∞ where L1 = �g1 and q1 =

g1 − L1; and that type 2 customers adhere to policy [g2]
∞ where L2 = �g2 and

q2 = g2 − L2. Without loss of generality, assume that g1 ≥ g2. Define Ṽ (x, y) to be
the expected remaining time in the system for a customer in position y in the system
(counting from the head of the queue), given that there are x customers in total in the
system. It follows that the expected sojourn time of a customer in the M/M/1 system
who is about to join Q given that there are x customers already present, and future ar-
riving customers adhere to the policy g = (g1, g2) is given by V (x) = Ṽ (x+1, x+1).
Thus to compute the {Ṽ (x, y)}, there are 7 scenarios to consider:
(i) g1 = g2 i.e. L1 = L2 and q1 = q2; (ii) L1 = L2 and q1 > q2 = 0; (iii) L1 = L2 and
q1 > q2 > 0; (iv) L1 > L2 and q1 = q2 = 0; (v) L1 > L2, and q1 = 0 and q2 > 0; (vi)
L1 > L2, and q1 > 0 and q2 = 0; (vii) L1 > L2, and q1 > 0 and q2 > 0.
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Scenario (i): L1 = L2 and q1 = q2

Ṽ (x, y) =
1

λ + μ
+

λ

λ + μ
Ṽ (x + 1, y) +

μ(1 − p)
λ + μ

Ṽ (x − 1, y − 1) +
μp

λ + μ
Ṽ (x, y − 1) 1 < y ≤ x < L2

Ṽ (x, 1) =
1

λ + μ
+

λ

λ + μ
Ṽ (x + 1, 1) +

μp

λ + μ
Ṽ (x, x) 1 = y ≤ x < L2

Ṽ (L2, y) =
1

(λ1 + λ2)q1 + μ
+

(λ1 + λ2)q1

(λ1 + λ2)q1 + μ
Ṽ (L2 + 1, y)

+
μ(1 − p)

(λ1 + λ2)q1 + μ
Ṽ (L2 − 1, y − 1) +

μp

(λ1 + λ2)q1 + μ
Ṽ (L2, y − 1) 1 < y ≤ x = L2 < B

Ṽ (L2, 1) =
1

(λ1 + λ2)q1 + μ
+

(λ1 + λ2)q1

(λ1 + λ2)q1 + μ
Ṽ (L2 + 1, 1)

+
μp

(λ1 + λ2)q1 + μ
Ṽ (L2, L2) 1 = y ≤ x = L2 < B

Ṽ (x, y) =
1
μ

+ (1 − p)Ṽ (x − 1, y − 1) + pṼ (x, y − 1) 1 < y ≤ x & L1 < x ≤ B

Ṽ (x, 1) =
1
μ

+ pṼ (x, x) 1 = y ≤ x & L1 < x ≤ B.

Formulae for the cases covered by 1 ≤ y ≤ x < L2, and 1 ≤ y ≤ x & L1 < x ≤ B
for Scenarios (ii)-(vii) are exactly the same as in Scenario (i). Formulae for all of the
other remaining possibilities are presented below.

Scenario (ii): L1 = L2 and q1 > q2 = 0

Ṽ (L1, y) =
1

λ1q1 + μ
+

λ1q1

λ1q1 + μ
Ṽ (L1 + 1, y)

+
μ(1 − p)
λ1q1 + μ

Ṽ (L1 − 1, y − 1) +
μp

λ1q1 + μ
Ṽ (L1, y − 1) 1 < y ≤ x = L1 < B

Ṽ (L1, 1) =
1

λ1q1 + μ
+

λ1q1

λ1q1 + μ
Ṽ (L1 + 1, 1) +

μp

λ1q1 + μ
Ṽ (L1, L1) 1 = y ≤ x = L1 < B

Scenario (iii): L1 = L2 and q1 > 0 & q2 > 0

Ṽ (L1, y) =
1

λ1q1 + λ2q2 + μ
+

(
λ1q1 + λ2q2

λ1q1 + λ2q2 + μ

)
Ṽ (L1 + 1, y)

+
μ(1 − p)

λ1q1 + λ2q2 + μ
Ṽ (L1 − 1, y − 1) +

μp

λ1q1 + λ2q2 + μ
Ṽ (L1, y − 1) 1 < y ≤ x = L1 < B

Ṽ (L1, 1) =
1

λ1q1 + λ2q2 + μ
+

(
λ1q1 + λ2q2

λ1q1 + λ2q2 + μ

)
Ṽ (L1 + 1, 1)

+
μp

λ1q1 + λ2q2 + μ
Ṽ (L1, L1) 1 = y ≤ x = L1 < B
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Scenario (iv): L1 > L2 and q1 = q2 = 0

Ṽ (x, y) =
1

λ1 + μ
+

(
λ1

λ1 + μ

)
Ṽ (x + 1, y)

+
μ(1 − p)
λ1 + μ

Ṽ (x − 1, y − 1) +
μp

λ1 + μ
Ṽ (x, y − 1) 1 < y ≤ x & L2 ≤ x < L1

Ṽ (x, 1) =
1

λ1 + μ
+

(
λ1

λ1 + μ

)
Ṽ (x + 1, 1) +

μp

λ1 + μ
Ṽ (x, x) 1 = y ≤ x & L2 ≤ x < L1

Ṽ (L1, y) =
1
μ

+ (1 − p)Ṽ (L1 − 1, y − 1) + pṼ (L1, y − 1) 1 < y ≤ x = L1 < B

Ṽ (L1, 1) =
1
μ

+ pṼ (L1, L1) 1 = y ≤ x = L1 < B

Scenario (v): L1 > L2 and q1 = 0 & q2 > 0

Ṽ (L2, y) =
1

λ1 + λ2q2 + μ
+

(
λ1 + λ2q2

λ1 + λ2q2 + μ

)
Ṽ (L2 + 1, y)

+
μ(1 − p)

λ1 + λ2q2 + μ
Ṽ (L2 − 1, y − 1) +

μp

λ1 + λ2q2 + μ
Ṽ (L2, y − 1) 1 < y ≤ x = L2

Ṽ (L2, 1) =
1

λ1 + λ2q2 + μ
+

(
λ1 + λ2q2

λ1 + λ2q2 + μ

)
Ṽ (L2 + 1, 1)

+
μp

λ1 + λ2q2 + μ
Ṽ (L2, L2) 1 = y ≤ x = L2

Ṽ (x, y) =
1

λ1 + μ
+

(
λ1

λ1 + μ

)
Ṽ (x + 1, y)

+
μ(1 − p)
λ1 + μ

Ṽ (x − 1, y − 1) +
μp

λ1 + μ
Ṽ (x, y − 1) 1 < y ≤ x & L2 < x < L1

Ṽ (x, 1) =
1

λ1 + μ
+

(
λ1

λ1 + μ

)
Ṽ (x + 1, 1) +

μp

λ1 + μ
Ṽ (x, x) 1 = y ≤ x & L2 < x < L1

Ṽ (L1, y) =
1
μ

+ (1 − p)Ṽ (L1 − 1, y − 1) + pṼ (L1, y − 1) 1 < y ≤ x = L1

Ṽ (L1, 1) =
1
μ

+ pṼ (L1, L1) 1 = y ≤ x = L1.

Scenario (vi): L1 > L2 and q1 > 0 & q2 = 0

Ṽ (x, y) =
1

λ1 + μ
+

λ1

λ1 + μ
Ṽ (x + 1, y)

+
μ(1 − p)
λ1 + μ

Ṽ (x − 1, y − 1) +
μp

λ1 + μ
Ṽ (x, y − 1) 1 < y ≤ x & L2 ≤ x < L1

Ṽ (x, 1) =
1

λ1 + μ
+

λ1

λ1 + μ
Ṽ (x + 1, 1) +

μp

λ1 + μ
Ṽ (x, x) 1 = y ≤ x & L2 ≤ x < L1

Ṽ (L1, y) =
1

λ1q1 + μ
+

λ1q1

λ1q1 + μ
Ṽ (L1 + 1, y)

+
μ(1 − p)
λ1q1 + μ

Ṽ (L1 − 1, y − 1) +
μp

λ1q1 + μ
Ṽ (L1, y − 1) 1 < y ≤ x = L1 < B

Ṽ (L1, 1) =
1

λ1q1 + μ
+

λ1q1

λ1q1 + μ
Ṽ (L1 + 1, 1) +

μp

λ1q1 + μ
Ṽ (L1, L1) 1 = y ≤ x = L1 < B.
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Scenario (vii): L1 > L2 and q1 > 0 & q2 > 0

Ṽ (L2, y) =
1

λ1 + λ2q2 + μ
+

(
λ1 + λ2q2

λ1 + λ2q2 + μ

)
Ṽ (L2 + 1, y)

+
μ(1 − p)

λ1 + λ2q2 + μ
Ṽ (L2 − 1, y − 1) +

μp

λ1 + λ2q2 + μ
Ṽ (L2, y − 1) 1 < y ≤ x = L2 < L1

Ṽ (L2, 1) =
1

λ1 + λ2q2 + μ
+

(
λ1 + λ2q2

λ1 + λ2q2 + μ

)
Ṽ (L2 + 1, 1)

+
μp

λ1 + λ2q2 + μ
Ṽ (L2, L2) 1 = y ≤ x = L2 < L1

Ṽ (x, y) =
1

λ1 + μ
+

(
λ1

λ1 + μ

)
Ṽ (x + 1, y)

+
(

μ[1 − p]
λ1 + μ

)
Ṽ (x − 1, y − 1) +

μp

λ1 + μ
Ṽ (x, y − 1) 1 < y ≤ x & L2 < x < L1

Ṽ (x, 1) =
1

λ1 + μ
+

(
λ1

λ1 + μ

)
Ṽ (x + 1, 1) +

μp

λ1 + μ
Ṽ (x, x) 1 = y ≤ x & L2 < x < L1

Ṽ (L1, y) =
1

λ1q1 + μ
+

(
λ1q1

λ1q1 + μ

)
Ṽ (L1 + 1, y)

+
(

μ[1 − p]
λ1q1 + μ

)
Ṽ (L1 − 1, y − 1) +

μp

λ1q1 + μ
Ṽ (L1, y − 1) 1 < y ≤ x = L1 < B

Ṽ (L1, 1) =
1

λ1q1 + μ
+

(
λ1q1

λ1q1 + μ

)
Ṽ (L1 + 1, 1) +

μp

λ1q1 + μ
Ṽ (L1, L1) 1 = y ≤ x = L1 < B.
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