55 research outputs found

    Surface-modified nanoparticles as anti-biofilm filler for dental polymers

    Get PDF
    The objective of the study was to synthesis silica nanoparticles modified with (i) a tertiary amine bearing two t-cinnamaldehyde substituents or (ii) dimethyl-octyl ammonium, alongside the well-studied quaternary ammonium polyethyleneimine nanoparticles. These were to be evaluated for their chemical and mechanical properties, as well for antibacterial and antibiofilm activity. Samples were incorporated in commercial dental resin material and the degree of monomer conversion, mechanical strength, and water contact angle were tested to characterize the effect of the nanoparticles on resin material. Antibacterial activity was evaluated with the direct contact test and the biofilm inhibition test against Streptococcus mutans. Addition of cinnamaldehyde-modified particles preserved the degree of conversion and compressive strength of the base material and increased surface hydrophobicity. Quaternary ammonium functional groups led to a decrease in the degree of conversion and to low compressive strength, without altering the hydrophilic nature of the base material. In the direct contact test and the anti-biofilm test, the polyethyleneimine particles exhibited the strongest antibacterial effect. The cinnamaldehyde-modified particles displayed antibiofilm activity, silica particles with quaternary ammonium were ineffective. Immobilization of t-cinnamaldehyde onto a solid surface via amine linkers provided a better alternative to the well-known quaternary ammonium bactericides

    Absence of the Fifth Force Problem in a Model with Spontaneously Broken Dilatation Symmetry

    Full text link
    A scale invariant model containing dilaton ϕ\phi and dust (as a model of matter) is studied where the shift symmetry ϕϕ+const.\phi\to\phi +const. is spontaneously broken at the classical level due to intrinsic features of the model. The dilaton to matter coupling "constant" ff appears to be dependent of the matter density. In normal conditions, i.e. when the matter energy density is many orders of magnitude larger than the dilaton contribution to the dark energy density, ff becomes less than the ratio of the "mass of the vacuum" in the volume occupied by the matter to the Planck mass. The model yields this kind of "Archimedes law" without any especial (intended for this) choice of the underlying action and without fine tuning of the parameters. The model not only explains why all attempts to discover a scalar force correction to Newtonian gravity were unsuccessful so far but also predicts that in the near future there is no chance to detect such corrections in the astronomical measurements as well as in the specially designed fifth force experiments on intermediate, short (like millimeter) and even ultrashort (a few nanometer) ranges. This prediction is alternative to predictions of other known models.Comment: 23 pages, some explanations expanded, misprints corrected, reference adde

    Evolution of Metric Perturbations in Quintom Bounce model

    Full text link
    We in the paper study the metric perturbations generated in a bouncing universe driven by the Quintom matter. Firstly, we review the background evolution of Quintom Bounce and the power spectrum of scalar perturbations. Secondly, we study the non-Gaussianity of curvature perturbations and then calculate the tensor perturbations of the model.Comment: 10 pages, 5 figure

    Systematic Review of Medicine-Related Problems in Adult Patients with Atrial Fibrillation on Direct Oral Anticoagulants

    Get PDF
    New oral anticoagulant agents continue to emerge on the market and their safety requires assessment to provide evidence of their suitability for clinical use. There-fore, we searched standard databases to summarize the English language literature on medicine-related problems (MRPs) of direct oral anticoagulants DOACs (dabigtran, rivaroxban, apixban, and edoxban) in the treatment of adults with atri-al fibrillation. Electronic databases including Medline, Embase, International Pharmaceutical Abstract (IPA), Scopus, CINAHL, the Web of Science and Cochrane were searched from 2008 through 2016 for original articles. Studies pub-lished in English reporting MRPs of DOACs in adult patients with AF were in-cluded. Seventeen studies were identified using standardized protocols, and two reviewers serially abstracted data from each article. Most articles were inconclusive on major safety end points including major bleeding. Data on major safety end points were combined with efficacy. Most studies inconsistently reported adverse drug reactions and not adverse events or medication error, and no definitions were consistent across studies. Some harmful drug effects were not assessed in studies and may have been overlooked. Little evidence is provided on MRPs of DOACs in patients with AF and, therefore, further studies are needed to establish the safety of DOACs in real-life clinical practice

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016

    Get PDF
    The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030
    corecore