616 research outputs found
Instabilities in the Flux Line Lattice of Anisotropic Superconductors
The stability of the flux line lattice has been investigated within
anisotropic London theory. This is the first full-scale investigation of
instabilities in the `chain' state. It has been found that the lattice is
stable at large fields, but that instabilities occur as the field is reduced.
The field at which these instabilities first arise, ,
depends on the anisotropy and the angle at which the
lattice is tilted away from the -axis. These instabilities initially occur
at wavevector , and the component of along the
average direction of the flux lines, , is always finite. As the
instability occurs at finite the dependence of the cutoff on is
important, and we have used a cutoff suggested by Sudb\ospace and Brandt. The
instabilities only occur for values of the anisotropy appropriate to
a material like BSCCO, and not for anisotropies more appropriate to YBCO. The
lower critical field is calculated as a function of the angle
at which the applied field is tilted away from the crystal axis. The
presence of kinks in is seen to be related to instabilities in
the equilibrium flux line structure.Comment: Extensively revised paper, with modified analysis of elastic
instabilities. Calculation of the lower critical field is included, and the
presence of kinks in is seen to be related to the elastic
instabilities. 29 pages including 16 figures, LaTeX with epsf styl
Self-organized current transport through low angle grain boundaries in YBaCuO thin films, studied magnetometrically
The critical current density flowing across low angle grain boundaries in
YBaCuO thin films has been studied magnetometrically.
Films (200 nm thickness) were deposited on SrTiO bicrystal substrates
containing a single [001] tilt boundary, with angles of 2, 3, 5, and 7 degrees,
and the films were patterned into rings. Their magnetic moments were measured
in applied magnetic fields up to 30 kOe at temperatures of 5 - 95 K; current
densities of rings with or without grain boundaries were obtained from a
modified critical state model. For rings containing 5 and 7 degree boundaries,
the magnetic response depends strongly on the field history, which arises in
large part from self-field effects acting on the grain boundary.Comment: 8 pages, including 7 figure
Entropy and Spin Susceptibility of s-wave Type-II Superconductors near
A theoretical study is performed on the entropy and the spin
susceptibility near the upper critical field of s-wave
type-II superconductors with arbitrary impurity concentrations. The changes of
these quantities through may be expressed as , for example, where is the average flux density
and denotes entropy in the normal state. It is found that the
slopes and at T=0 are identical, connected
directly with the zero-energy density of states, and vary from 1.72 in the
dirty limit to in the clean limit. This mean-free-path dependence
of and at T=0 is quantitatively the same as that
of the slope for the flux-flow resistivity studied
previously. The result suggests that and near
T=0 are convex downward (upward) in the dirty (clean) limit, deviating
substantially from the linear behavior . The specific-heat
jump at also shows fairly large mean-free-path dependence.Comment: 8 pages, 5 figure
Thromboelastometry and Platelet Function during Acclimatization to High Altitude
Interaction between hypoxia and coagulation is important given the increased risk of thrombotic diseases in chronically hypoxic patients who reside at sea level and in residents at high altitude. Hypoxia alters the proteome of platelets favouring a prothrombotic phenotype, but studies of activation and consumption of specific coagulation factors in hypoxic humans have yielded conflicting results. We tested blood from 63 healthy lowland volunteers acclimatizing to high altitude (5,200 m) using thromboelastometry and assays of platelet function to examine the effects of hypoxia on haemostasis. Using data from two separate cohorts of patients following identical ascent profiles, we detected a significant delay in clot formation, but increased clot strength by day 7 at 5,200 m. The latter finding may be accounted for by the significant rise in platelet count and fibrinogen concentration that occurred during acclimatization. Platelet function assays revealed evidence of platelet hyper-reactivity, with shortened PFA-100 closure times and increased platelet aggregation in response to adenosine diphosphate. Post-expedition results were consistent with the normalization of coagulation following descent to sea level. These robust findings indicate that hypoxia increases platelet reactivity and, with the exception of the paradoxical delay in thromboelastometry clotting time, suggest a prothrombotic phenotype at altitude. Further work to elucidate the mechanism of platelet activation in hypoxia will be important and could impact upon the management of patients with acute or chronic hypoxic respiratory diseases who are at risk of thrombotic events.
Erratum to: Thromboelastometry and platelet function during acclimatisation to high altitude (doi: 10.1160/TH17-02-0138) http://eprints.whiterose.ac.uk/129510/
In the Original Article by Rocke et al. “Thromboelastometry and platelet function during acclimatization to high altitude” (Thromb Haemost 2018; 118: 063-071) after publication of the article it has come to the corresponding author's attention that an author was inadvertently omitted from the manuscript. The author, Martin MacInnis, made a significant contribution to: 1. initiating the coagulation research that led to the manuscript, 2. designing the research protocol and performing the initial data analysis, 3. recruiting volunteers, writing applications for ethical approval and making other logistical arrangements that were necessary to complete the study. Martin MacInnis has read and approved the published version of the manuscript. Furthermore, a middle initial was added to the updated list (Shona E. Main) and misspelling of Elizabeth Horn's surname was corrected. The amended author list is as above. https://doi.org
Continuous-distribution puddle model for conduction in trilayer graphene
An insulator-to-metal transition is observed in trilayer graphene based on
the temperature dependence of the resistance under different applied gate
voltages. At small gate voltages the resistance decreases with increasing
temperature due to the increase in carrier concentration resulting from thermal
excitation of electron-hole pairs. At large gate voltages excitation of
electron-hole pairs is suppressed, and the resistance increases with increasing
temperature because of the enhanced electron-phonon scattering. We find that
the simple model with overlapping conduction and valence bands, each with
quadratic dispersion relations, is unsatisfactory. Instead, we conclude that
impurities in the substrate that create local puddles of higher electron or
hole densities are responsible for the residual conductivity at low
temperatures. The best fit is obtained using a continuous distribution of
puddles. From the fit the average of the electron and hole effective masses can
be determined.Comment: 18 pages, 5 figure
Quasi particle interference of heavy fermions in resonant x ray scattering
Resonant x ray scattering RXS has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity induced Friedel oscillations, akin to quasi particle interference signals observed with a scanning tunneling microscope STM , can lead to scattering peaks in RXS experiments. The possibility that quasi particle properties can be probed in RXSmeasurements opens up a new avenue to study the bulk band structure ofmaterials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 M Co, Rh . Temperature and doping dependent RXSmeasurements at the Ce M4 edge show abroad scattering enhancement that correlateswith the appearance of heavy f electron bands in these compounds. The scattering enhancement is consistentwith themeasured quasi particle interference signal in the STMmeasurements, indicating that the quasi particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS techniqu
Cortical correlates of speech intelligibility measured using functional near-infrared spectroscopy (fNIRS)
Functional neuroimaging has identified that the temporal, frontal and parietal cortex support core aspects of speech processing. An objective measure of speech intelligibility based on cortical activation in these brain regions would be extremely useful to speech communication and hearing device applications. In the current study, we used noise-vocoded speech to examine cortical correlates of speech intelligibility in normally-hearing listeners using functional near-infrared spectroscopy (fNIRS), a non-invasive, neuroimaging technique that is fully-compatible with hearing devices, including cochlear implants. In twenty-three normally-hearing adults we measured (1) activation in superior temporal, inferior frontal and inferior parietal cortex bilaterally and (2) behavioural speech intelligibility. Listeners heard noise-vocoded sentences targeting five equally spaced levels of intelligibility between 0 and 100% correct. Activation in superior temporal regions increased linearly with intelligibility. This relationship appears to have been driven in part by changing acoustic properties across stimulation conditions, rather than solely by intelligibility per se. Superior temporal activation was also predictive of individual differences in intelligibility in a challenging listening condition. Beyond superior temporal cortex, we identified regions in which activation varied non-linearly with intelligibility. For example, in left inferior frontal cortex, activation peaked in response to heavily degraded, yet still somewhat intelligible, speech. Activation in this region was linearly related to response time on a simultaneous behavioural task, suggesting it may contribute to decision making. Our results indicate that fNIRS has the potential to provide an objective measure of speech intelligibility in normally-hearing listeners. Should these results be found to apply similarly in the case of individuals listening through a cochlear implant, fNIRS would demonstrate potential for a clinically useful measure not only of speech intelligibility, but also of listening effort
On the Crustal Matter of Magnetars
We have investigated some of the properties of dense sub-nuclear matter at
the crustal region (both the outer crust and the inner crust region) of a
magnetar. The relativistic version of Thomas-Fermi (TF) model is used in
presence of strong quantizing magnetic field for the outer crust matter. The
compressed matter in the outer crust, which is a crystal of metallic iron, is
replaced by a regular array of spherically symmetric Wigner-Seitz (WS) cells.
In the inner crust region, a mixture of iron and heavier neutron rich nuclei
along with electrons and free neutrons has been considered. Conventional
Harrison-Wheeler (HW) and Bethe-Baym-Pethick (BBP) equation of states are used
for the nuclear mass formula. A lot of significant changes in the
characteristic properties of dense crustal matter, both at the outer crust and
the inner crust, have been observed.Comment: 29 pages REVTEX manuscript, 15 .eps figures (included
Cooling of Neutron Stars with Strong Toroidal Magnetic Fields
We present models of temperature distribution in the crust of a neutron star in the presence of a strong toroidal component superposed to the poloidal component of the magnetic field. The presence of such a toroidal field hinders heat flow toward the surface in a large part of the crust. As a result, the neutron star surface presents two warm regions surrounded by extended cold regions and has a thermal luminosity much lower than in the case the magnetic field is purely poloidal. We apply these models to calculate the thermal evolution of such neutron stars and show that the lowered photon luminosity naturally extends their life-time as detectable thermal X-ray sources
Occupational exposures to solvents and metals are associated with fixed airflow obstruction
peer-reviewedOur study is the first to investigate the associations between exposures to solvents and metals using lifetime work history calendars and fixed airflow obstruction (AO). We have shown that increasing cumulative exposure-unit years to chlorinated solvents is associated with fixed AO. We found that women were at increased risk of fixed AO with increasing cumulative exposed-unit-years to chlorinated solvents but not men
- …