1,092 research outputs found

    Alexander Cuthbertson (1901-1942): from Scotland to Rhodesia, a dipterist’s journey

    Get PDF
    No abstract available

    Structure, classifcation, and conformal symmetry, of elementary particles over non-archimedean space-time

    Get PDF
    It is known that no length or time measurements are possible in sub-Planckian regions of spacetime. The Volovich hypothesis postulates that the micro-geometry of spacetime may therefore be assumed to be non-archimedean. In this letter, the consequences of this hypothesis for the structure, classification, and conformal symmetry of elementary particles, when spacetime is a flat space over a non-archimedean field such as the pp-adic numbers, is explored. Both the Poincar\'e and Galilean groups are treated. The results are based on a new variant of the Mackey machine for projective unitary representations of semidirect product groups which are locally compact and second countable. Conformal spacetime is constructed over pp-adic fields and the impossibility of conformal symmetry of massive and eventually massive particles is proved

    Intravascular Stapler for “Open” Aortic Surgery: Preliminary Results

    Get PDF
    NumeraciĂłn errĂłnea en el original

    Energy Budget of Cosmological First-order Phase Transitions

    Full text link
    The study of the hydrodynamics of bubble growth in first-order phase transitions is very relevant for electroweak baryogenesis, as the baryon asymmetry depends sensitively on the bubble wall velocity, and also for predicting the size of the gravity wave signal resulting from bubble collisions, which depends on both the bubble wall velocity and the plasma fluid velocity. We perform such study in different bubble expansion regimes, namely deflagrations, detonations, hybrids (steady states) and runaway solutions (accelerating wall), without relying on a specific particle physics model. We compute the efficiency of the transfer of vacuum energy to the bubble wall and the plasma in all regimes. We clarify the condition determining the runaway regime and stress that in most models of strong first-order phase transitions this will modify expectations for the gravity wave signal. Indeed, in this case, most of the kinetic energy is concentrated in the wall and almost no turbulent fluid motions are expected since the surrounding fluid is kept mostly at rest.Comment: 36 pages, 14 figure

    Direct seeding of chenopod shrubs for saltland and rangeland environments

    Get PDF
    There are currently two ways of establishing chenopod shrubs: sowing from seed using a niche seeder, or planting nursery-raised seedlings with a tree planter. Planting seedlings is the more reliable method, but is relatively expensive (in excess of 450perhectare).Ontheotherhand,directseedingusingthespecialised“nicheseeder”ismuchlessexpensive(450 per hectare). On the other hand, direct seeding using the specialised “niche seeder” is much less expensive (100-150 per hectare), but is also less reliable. This project aimed to investigate alternative methods of direct seeding chenopod shrubs for saltland and rangeland areas by developing a greater understanding of their seed biology and agronomic requirements. Our aspiration was that shrubs should be established using more conventional farm machinery. This bulletin reports on a combination of seed biology and agronomic research to develop reliable, low-cost direct seeding options for chenopod shrubs. Experiments into the impact of changing environmental conditions on seeds were studied in the laboratory, and field experiments were conducted to test the applicability of these insights in the field using conventional modified farm seeding machinery. As a result of this work, a successful direct seeding package using farm seeding equipment (modified for wide row spacings and depth control) was developed for Atriplex nummularia (old man saltbush), the most widely planted saltbush species across southern Australia. The nine key elements of the package are: 1. Select suitable paddocks for introduction of new shrubs 2. Prepare a weed-free seedbed using two knockdown herbicide applications (4-6 weeks and 1-2 weeks before seeding) and commence control of rabbits and kangaroos 3. Sow the best seed, by ensuring: a. Large fruits, with a high proportion of viable seeds, have been selected b. Seed is of subspecies nummularia (not subsp. spathulata) c. Fruits have been harvested within the previous six months and stored in a cool, dry environment d. Bracts are retained around the seeds 4. Sow into moisture in late winter - early spring (depending on district) a. If the area to be sown is waterlogged, defer sowing until later in spring b. If insufficient soil moisture, defer sowing until the following year 5. Use a sowing rate of ~10 fruits/m (if germination rate is 15%) to provide at least one plant for every 2 m of row; use higher rates for seed of lower germination 6. Set the seeder up to sow into furrows with trailing press wheels 7. Sow to a depth of 5-10 mm (very critical) 8. Control weeds and pests (insects, mites, kangaroos and rabbits) 9. Defer grazing until seedlings are well established This establishment method has also been shown to work for Rhagodia preissii (mallee saltbush). This project was not able to develop reliable direct seeding packages for other Atriplex species, including A. amnicola and A. undulata. Further work is needed to understand the triggers for their germination, before these species can be direct-seeded with conventional machinery. Direct sowing of M. brevifolia and M. pyramidata appears to be problematic in much of southern Australia, due to their requirement for temperatures >30°C for germination, which do not occur within the normal winter growing season. An exception to this would be areas with more reliable summer rainfall, such as northern New South Wales, where sowing could be deferred until late spring-early summer. An alternative strategy for establishing M. brevifolia, is to encourage natural recruitment of seedlings from seed produced on surrounding bushes (if it is already present in the area), or to transplant a low density of nursery-raised seedlings, which could then act as a seed source for natural recruitment (if it is not already present)

    Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results

    Full text link
    The thermal production of relativistic right-handed Majorana neutrinos is of importance for models of thermal leptogenesis in the early Universe. Right-handed neutrinos can be produced both by 1 2 decay or inverse decay and by 2 -> 2 scattering processes. In a previous publication, we have studied the production via 1 2 (inverse) decay processes. There we have shown that multiple scattering mediated by soft gauge boson exchange also contributes to the production rate at leading order, and gives a strong enhancement. Here we complete the leading order calculation by adding 2 -> 2 scattering processes involving either electroweak gauge bosons or third-generation quarks. We find that processes with gauge interactions give the most important contributions. We also obtain a new sum rule for the Hard Thermal Loop resummed fermion propagator.Comment: 27 pages, 7 figures. Error in the matrix element for the (subdominant) subprocess with s-channel fermion exchange corrected. This changes the corresponding phase space integral and the constant c_V. Numerically it increases the total 2 -> 2 rate by about 2 percent and the complete rate by about 1 percent. The main results and conclusions are unaffecte

    Confusing the extragalactic neutrino flux limit with a neutrino propagation limit

    Full text link
    We study the possible suppression of the extragalactic neutrino flux due to a nonstandard interaction during its propagation. In particular, we study neutrino interaction with an ultra-light scalar field dark matter. It is shown that the extragalactic neutrino flux may be suppressed by such an interaction, leading to a new mechanism to reduce the ultra-high energy neutrino flux. We study both the cases of non-self-conjugate as well as self-conjugate dark matter. In the first case, the suppression is independent of the neutrino and dark matter masses. We conclude that care must be taken when explaining limits on the neutrino flux through source acceleration mechanisms only, since there could be other mechanisms for the reduction of the neutrino flux.Comment: 15 pages, 4 figures. Important changes implemented. Abstract modified. Conclusions remain. To be published in JCA

    Modified Gravity via Spontaneous Symmetry Breaking

    Full text link
    We construct effective field theories in which gravity is modified via spontaneous breaking of local Lorentz invariance. This is a gravitational analogue of the Higgs mechanism. These theories possess additional graviton modes and modified dispersion relations. They are manifestly well-behaved in the UV and free of discontinuities of the van Dam-Veltman-Zakharov type, ensuring compatibility with standard tests of gravity. They may have important phenomenological effects on large distance scales, offering an alternative to dark energy. For the case in which the symmetry is broken by a vector field with the wrong sign mass term, we identify four massless graviton modes (all with positive-definite norm for a suitable choice of a parameter) and show the absence of the discontinuity.Comment: 5 pages; revised versio

    The low-lying excitations of polydiacetylene

    Full text link
    The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the nature of the low-lying vertical transition energies of polydiacetylene. The model is solved using the density matrix renormalisation group method for a fixed acetylenic geometry for chains of up to 102 atoms. The non-linear optical properties of polydiacetylene are considered, which are determined by the third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are used as the geometric model for the calculation. For short chains, the calculated E(1Bu) agrees with the experimental value, within solvation effects (ca. 0.3 eV). The charge gap is used to characterise bound and unbound states. The nBu is above the charge gap and hence a continuum state; the 1Bu, 2Ag and mAg are not and hence are bound excitons. For large chain lengths, the nBu tends towards the charge gap as expected, strongly suggesting that the nBu is the conduction band edge. The conduction band edge for PDA is agreed in the literature to be ca. 3.0 eV. Accounting for the strong polarisation effects of the medium and polaron formation gives our calculated E(nBu) ca. 3.6 eV, with an exciton binding energy of ca. 1.0 eV. The 2Ag state is found to be above the 1Bu, which does not agree with relaxed transition experimental data. However, this could be resolved by including explicit lattice relaxation in the Pariser- Parr-Pople-Peierls model. Particle-hole separation data further suggest that the 1Bu, 2Ag and mAg are bound excitons, and that the nBu is an unbound exciton.Comment: LaTeX, 23 pages, 4 postscript tables and 8 postscript figure
    • …
    corecore