39 research outputs found

    Modeling of a Giant Exoring System Around the Substellar Companion J1407b

    Get PDF
    Stars and planetary system

    A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in MNRAS following peer review. The version of record is available online at: http://mnras.oxfordjournals.org/content/454/1/593.We present a self-consistent, absolute isochronal age scale for young (< 200 Myr), nearby (< 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the tau^2 maximum-likelihood fitting statistic of Naylor & Jeffries in the M_V, V-J colour-magnitude diagram. The final adopted ages for the groups are: 149+51-19 Myr for the AB Dor moving group, 24+/-3 Myr for the {\beta} Pic moving group (BPMG), 45+11-7 Myr for the Carina association, 42+6-4 Myr for the Columba association, 11+/-3 Myr for the {\eta} Cha cluster, 45+/-4 Myr for the Tucana-Horologium moving group (Tuc-Hor), 10+/-3 Myr for the TW Hya association, and 22+4-3 Myr for the 32 Ori group. At this stage we are uncomfortable assigning a final, unambiguous age to the Argus association as our membership list for the association appears to suffer from a high level of contamination, and therefore it remains unclear whether these stars represent a single population of coeval stars. Our isochronal ages for both the BPMG and Tuc-Hor are consistent with recent lithium depletion boundary (LDB) ages, which unlike isochronal ages, are relatively insensitive to the choice of low-mass evolutionary models. This consistency between the isochronal and LDB ages instills confidence that our self-consistent, absolute age scale for young, nearby moving groups is robust, and hence we suggest that these ages be adopted for future studies of these groups. Software implementing the methods described in this study is available from http: //www.astro.ex.ac.uk/people/timn/tau-squared/.University of Rochester School of Arts and SciencesNational Science Foundation (NSF

    The μ Tau association: A 60 Myr old coeval group at 150 pc from the Sun

    Get PDF
    We present an analysis of the newly identified μTau Association (MUTA) of young stars at ≈150 pc from the Sun that is part of the large Cas-Tau structure, coeval and comoving with the α Persei cluster. This association is also located in the vicinity of the Taurus-Auriga star-forming region and the Pleiades association, although it is unrelated to them. We identify more than 500 candidate members of MUTA using Gaia DR2 data and the BANYAN Σ tool, and we determine an age of 62 ± 7 Myr for its population based on an empirical comparison of its color-magnitude diagram sequence with those of other nearby young associations. The MUTA association is related to the Theia 160 group of Kounkel & Covey and corresponds to the e Tau group of Liu et al. It is also part of the Cas-Tau group of Blaauw. As part of this analysis, we introduce an iterative method based on spectral templates to perform an accurate correction of interstellar extinction of Gaia DR2 photometry, needed because of its wide photometric bandpasses. We show that the members of MUTA display an expected increased rate of stellar activity and faster rotation rates compared with older stars, and that literature measurements of the lithium equivalent width of nine G0- to K3-type members are consistent with our age determination. We show that the present-day mass function of MUTA is consistent with other known nearby young associations. We identify WD 0340+103 as a hot, massive white dwarf remnant of a B2 member that left its planetary nebula phase only 270,000 yr ago, posing an independent age constraint of - 60+8-6 Myr for MUTA, consistent with our isochrone age. This relatively large collection of comoving young stars near the Sun indicates that more work is required to unveil the full kinematic structure of the complex of young stars surrounding α Persei and Cas-Tau

    Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates

    Get PDF
    Context. The 16 Myr old star 1SWASP J140747.93-394542.6 (V1400 Cen) underwent a series of complex eclipses in May 2007, interpreted as the transit of a giant Hill sphere filling debris ring system around a secondary companion, J1407b. No other eclipses have since been detected, although other measurements have constrained but not uniquely determined the orbital period of J1407b. Finding another eclipse towards J1407 will help determine the orbital period of the system, the geometry of the proposed ring system and enable planning of further observations to characterize the material within these putative rings. Aims. We carry out a search for other eclipses in photometric data of J1407 with the aim of constraining the orbital period of J1407b. Methods. We present photometry from archival photographic plates from the Harvard DASCH survey, and Bamberg and Sonneberg Observatories, in order to place additional constraints on the orbital period of J1407b by searching for other dimming and eclipse events. Using a visual inspection of all 387 plates and a period-folding algorithm we performed a search for other eclipses in these data sets. Results. We find no other deep eclipses in the data spanning from 1890 to 1990, nor in recent time-series photometry from 2012-2018. Conclusions. We rule out a large fraction of putative orbital periods for J1407b from 5 to 20 years. These limits are still marginally consistent with a large Hill sphere filling ring system surrounding a brown dwarf companion in a bound elliptical orbit about J1407. Issues with the stability of any rings combined with the lack of detection of another eclipse, suggests that J1407b may not be bound to J1407.Comment: 8 pages, 3 tables, 4 figures, accepted for publication in A&A. LaTeX files of the paper, scripts for the figures, and a minimal working FPA can be found under https://github.com/robinmentel/Constraining-Period
    corecore