7 research outputs found

    Distribution and diversity of Phytophthora across Australia

    Get PDF
    The introduction and subsequent impact of Phytophthora cinnamomi within native vegetation is one of the major conservation issues for biodiversity in Australia. Recently, many new Phytophthora species have been described from Australia's native ecosystems; however, their distribution, origin, and potential impact remain unknown. Historical bias in Phytophthora detection has been towards sites showing symptoms of disease, and traditional isolation methods show variable effectiveness of detecting different Phytophthora species. However, we now have at our disposal new techniques based on the sampling of environmental DNA and metabarcoding through the use of high-throughput sequencing. Here, we report on the diversity and distribution of Phytophthora in Australia using metabarcoding of 640 soil samples and we compare the diversity detected using this technique with that available in curated databases. Phytophthora was detected in 65% of sites, and phylogenetic analysis revealed 68 distinct Phytophthora phylotypes. Of these, 21 were identified as potentially unique taxa and 25 were new detections in natural areas and/or new introductions to Australia. There are 66Phytophthora taxa listed in Australian databases, 43 of which were also detected in this metabarcoding study. This study revealed high Phytophthora richness within native vegetation and the additional records provide a valuable baseline resource for future studies. Many of the Phytophthora species now uncovered in Australia's native ecosystems are newly described and until more is known we need to be cautious with regard to the spread and conservation management of these new species in Australia's unique ecosystems

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    Mycology in Hong Kong

    No full text

    Plant, invertebrate and pathogen interactions in Kosciuszko National Park

    Get PDF
    Kosciuszko National Park is the largest protected area in NSW and the only reserve in the State containing alpine vegetation. Diseases and pests of plants in the park are poorly known and, until recently, were thought to be benign and rare because of the cold climate. Surveys after the 2003 fire that burnt about 70% of the park detected dieback in both unburnt and regenerating burnt shrubs and trees. Since then, 36 species of Phytophthora have been identified in the park. Some perhaps do not persist but at least two (P. gregata and P cambivora) are affecting the survival of two native shrub species. The fungus Armillaria luteobubalina also has been isolated from dying shrubs. Many insects and a mite have been identified on shrubs and trees in poor health. Although some of the invertebrate and disease syndromes are likely to be cyclic and natural, their interaction with climate change and invasive species may interrupt such cycles. One threatened species, Eucalyptus saxatilis, is in severe decline at some sites because of insect herbivory perhaps in conjunction with unusual climatic events. Climate change is also likely to allow the invasion or expansion of non-native and native pathogens and invertebrates with unpredictable consequences

    Current status of Phytophthora in Australia

    Get PDF
    Among the most economically relevant and environmentally devastating diseases globally are those caused by Phytophthora species. In Australia, production losses in agriculture and forestry results from several well-known cosmopolitan Phytophthora species and infestation of natural ecosystems by Phytophthora cinnamomi have caused irretrievable loss to biodiversity, especially in proteaceous dominated heathlands. For this review, all available records of Phytophthora in Australia were collated and curated, resulting in a database of 7 869 records, of which 2 957 have associated molecular data. Australian databases hold records for 99 species, of which 20 are undescribed. Eight species have no records linked to molecular data, and their presence in Australia is considered doubtful. The 99 species reside in 10 of the 12 clades recognised within the complete phylogeny of Phytophthora. The review includes discussion on each of these species’ status and additional information provided for another 29 species of concern. The first species reported in Australia in 1900 was Phytophthora infestans. By 2000, 27 species were known, predominantly from agriculture. The significant increase in species reported in the subsequent 20 years has coincided with extensive surveys in natural ecosystems coupled with molecular taxonomy and the recognition of numerous new phylogenetically distinct but morphologically similar species. Routine and targeted surveys within Australian natural ecosystems have resulted in the description of 27 species since 2009. Due to the new species descriptions over the last 20 years, many older records have been reclassified based on molecular identification. The distribution of records is skewed toward regions with considerable activity in high productivity agriculture, horticulture and forestry, and native vegetation at risk from P. cinnamomi. Native and exotic hosts of different Phytophthora species are found throughout the phylogeny; however, species from clades 1, 7 and 8 are more likely to be associated with exotic hosts. One of the most difficult challenges to overcome when establishing a pest status is a lack of reliable data on the current state of a species in any given country or location. The database compiled here for Australia and the information provided for each species overcomes this challenge. This review will aid federal and state governments in risk assessments and trade negotiations by providing a comprehensive resource on the current status of Phytophthora species in Australia

    Fungal planet description sheets: 107-127

    No full text
    ArticleNovel species of microfungi described in the present study include the following from Australia: Phytophthora amnicola from still water, Gnomoniopsis smithogilvyi from Castanea sp., Pseudoplagiostoma corymbiae from Corymbia sp., Diaporthe eucalyptorum from Eucalyptus sp., Sporisorium andrewmitchellii from Enneapogon aff. lindleyanus, Myrmecridium banksiae from Banksia, and Pilidiella wangiensis from Eucalyptus sp. Several species are also described from South Africa, namely: Gondwanamyces wingfieldii from Protea caffra, Montagnula aloes from Aloe sp., Diaporthe canthii from Canthium inerne, Phyllosticta ericarum from Erica gracilis, Coleophoma proteae from Protea caffra, Toxicocladosporium strelitziae from Strelitzia reginae, and Devriesia agapanthi from Agapanthus africanus. Other species include Phytophthora asparagi from Asparagus officinalis (USA), and Diaporthe passiflorae from Passiflora edulis (South America). Furthermore, novel genera of coelomycetes include Chrysocrypta corymbiae from Corymbia sp. (Australia), Trinosporium guianense, isolated as a contaminant (French Guiana), and Xenosonderhenia syzygii, from Syzygium cordatum (South Africa). Pseudopenidiella piceae from Picea abies (Czech Republic), and Phaeocercospora colophospermi from Colophospermum mopane (South Africa) represent novel genera of hyphomycetes. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa. © 2012 Nationaal Herbarium Nederland & Centraalbureau voor Schimmelcultures

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    No full text
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. Previously (Geiser et al. 2013; Phytopathology 103:400-408. 2013), the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani Species Complex (FSSC). Subsequently, this concept was challenged by one research group (Lombard et al. 2015 Studies in Mycology 80: 189-245) who proposed dividing Fusarium into seven genera, including the FSSC as the genus Neocosmospora, with subsequent justification based on claims that the Geiser et al. (2013) concept of Fusarium is polyphyletic (Sandoval-Denis et al. 2018; Persoonia 41:109-129). Here we test this claim, and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species recently described as Neocosmospora were recombined in Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural and practical taxonomic option available
    corecore