33 research outputs found

    Quantum-chemical Calculations of the Adsorption of CO on the Metal Oxide Clusters

    Get PDF
    The geometric, energetic, spectral and electronic properties of the most stable clusters of the aluminum, nickel and copper oxides with the adsorbed CO molecule have been studied using Density Functional Theory. The obtained results showed the better adsorption properties of nickel oxide clusters. According to the obtained results, the adsorption activity of the examined clusters decreases in the following order: NiO > Al[2]O[3] > CuO. The stronger interaction between active centers of the nickel oxide clusters and CO molecule is attributed to the higher charge transfer from the adsorbate to the surface in comparison with other clusters. The optimal position for CO interaction with the metal oxide surfaces and the appropriate optimal M-CO and C-O bond distances are presented

    Analysis of diffraction efficiency of phase gratings in dependence of duty cycle and depth

    Get PDF
    The analysis of dependence of diffraction efficiency on duty cycle and modulation depth of phase gratings with rectangular and Gaussian profile was performed by means of specially designed program. An Angular Spectrum method applied for monochromatic light propagation in far field through phase grating was used for calculation of diffraction efficiency of gratings. Diffraction efficiency maps of 0-5th diffraction orders were obtained for different grating profiles. It is shown that changing the duty cycle of grating makes it possible to tune smoothly the diffraction efficiency and to redirect the light intensity in required orders

    Impact of the carrier relaxation paths on two-state operation in quantum dot lasers

    Get PDF
    We study InGaAs QD laser operating simultaneously at ground (GS) and excited (ES) states under 30ns pulsed-pumping and distinguish three regimes of operation depending on the pump current and the carrier relaxation pathways. An increased current leads to an increase in ES intensity and to a decrease in GS intensity (or saturation) for low pump range, as typical for the cascade-like pathway. Both the GS and ES intensities are steadily increased for high current ranges, which prove the dominance of the direct capture pathway. The relaxation oscillations are not pronounced for these ranges. For the mediate currents, the interplay between the both pathways leads to the damped large amplitude relaxation oscillations with significant deviation of the relaxation oscillation frequency from the initial value during the pulse

    The effect of slow passage in the pulse-pumped quantum dot laser

    Get PDF
    In recent years, quantum-dot (QD) semiconductor lasers attract significant interest in many practical applications due to their advantages such as high-power pulse generation because to the high gain efficiency. In this work, the pulse shape of an electrically pumped QD-laser under high current is analyzed. We find that the slow rise time of the pulsed pump may significantly affect the high intensity output pulse. It results in sharp power dropouts and deformation of the pulse profile. We address the effect to dynamical change of the phase-amplitude coupling in the proximity of the excited state (ES) threshold. Under 30ns pulse pumping, the output pulse shape strongly depends on pumping amplitude. At lower currents, which correspond to lasing in the ground state (GS), the pulse shape mimics that of the pump pulse. However, at higher currents the pulse shape becomes progressively unstable. The instability is greatest when in proximity to the secondary threshold which corresponds to the beginning of the ES lasing. After the slow rise stage, the output power sharply drops out. It is followed by a long-time power-off stage and large-scale amplitude fluctuations. We explain these observations by the dynamical change of the alpha-factor in the QD-laser and reveal the role of the slowly rising pumping processes in the pulse shaping and power dropouts at higher currents. The modeling is in very good agreement with the experimental observations

    Slow passage through thresholds in quantum dot lasers

    Get PDF
    A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state

    Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    Get PDF
    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes

    Quantum-chemical Calculations of the Adsorption of CO on the Metal Oxide Clusters

    Get PDF
    The geometric, energetic, spectral and electronic properties of the most stable clusters of the aluminum, nickel and copper oxides with the adsorbed CO molecule have been studied using Density Functional Theory. The obtained results showed the better adsorption properties of nickel oxide clusters. According to the obtained results, the adsorption activity of the examined clusters decreases in the following order: NiO > Al[2]O[3] > CuO. The stronger interaction between active centers of the nickel oxide clusters and CO molecule is attributed to the higher charge transfer from the adsorbate to the surface in comparison with other clusters. The optimal position for CO interaction with the metal oxide surfaces and the appropriate optimal M-CO and C-O bond distances are presented

    Effect of spectrum processing procedure on the linearity of EPR dose reconstruction in tooth enamel.

    No full text
    Electron Paramagnetic Resonance (EPR) spectroscopy with tooth enamel is a widely used method of dosimetry. The accuracy of EPR tooth dosimetry depends on the spectrum processing procedure, the quality of which, in its turn, relies on instrumental noise and the signals from impurities. This is especially important in low-dose evaluation. The current paper suggests a method to estimate the accuracy of a specific spectrum processing procedure. The method is based on reconstruction of the radiation-induced signal (RIS) from a simulated spectrum with known RIS intensity. The Monte Carlo method was used for the simulations. The model of impurity and noise signals represents a composite residual spectrum (CRS) obtained by subtraction of the reconstructed MS and the native background signal (BGS) from enamel spectra measured in HMGU (Neuherberg, Germany) and IMP (Yekaterinburg, Russia). The simulated spectra were deconvoluted using a standard procedure. The method provides an opportunity to compare the simulated "true" RIS with reconstructed values. Two modifications of the EPR method were considered: namely, with and without the use of the reference Mn2+ signals. It was observed that the spectrum processing procedure induces a nonlinear dose response of the reconstructed EPR amplitude when the height of the true MS is comparable with the amplitudes of noise-like random splashes of CRS. The area of nonlinearity is below the limit of detection (DL). The use of reference Mn2+ signals can reduce the range of nonlinearity. However, the impact of the intensities of CRS random signals on nonlinearity is two times higher than the one observed when the reference signals were not used. The reproducibility of the software response is also dependent on both the amplitude of the CRS and the use of a reference signal, and it is also two times more sensitive to the amplitude of the CRS. In most EPR studies, all of the data are used, even those for which the dose value is lower than the DL This study shows that low doses evaluated with the help of linear dose-response can be significantly overestimated. It is recommended that linear dose response calibration curves be constructed using only data above the DL. Data below the DL should be interpreted cautiously

    Effects of melting and ordering on the isosteric heat and monolayer density of argon adsorption on graphite

    No full text
    The aim of this paper is to study the effects of temperature on the state of the adsorbed argon on an uniform graphite surface. We applied the kinetic Monte Carlo scheme to simulate adsorption over a very wide range of temperature, which allows us to model the vapor–solid, the vapor–liquid and the order–disorder transition of the monolayer. The main distinction of our methodology is that it accounts for the lattice constant change with loading in the case of formation of an ordered molecular layer by appropriately changing the simulation box size. To do this we enforced the equality of the tangential pressures obtained by the virial and thermodynamic routes, which corresponds to the minimum Helmholtz free energy of a system at a given number of molecules and volume. This criterion is a consequence of the Gibbs–Duhem equation. A significant result obtained by application of the new simulation method was a sharp contraction of the monolayer just after its completion and the onset of the second layer. It manifests itself in an additional heat release. We re-determined the 2D-melting and 2D-critical temperatures of the molecular layer of argon. We also analyzed the order–disorder transition above the 2D-melting and showed that it could occur at some temperatures above the 2D-critical temperature. In this case, a hexagonal lattice appears at a sufficiently large tangential pressure. The effects of loading on the lattice constant, the 2D-critical temperature of the order–disorder transition and the differential heat of adsorption are thoroughly discussed
    corecore