1,418 research outputs found

    Inorganic elements in the livers of Eurasian otters, Lutra lutra, from England and Wales in 2007 & 2008: a Predatory Bird Monitoring Scheme (PBMS) report

    Get PDF
    This is a report on the initial findings of a collaborative study between the Predatory Bird Monitoring Scheme (PBMS) and the Cardiff University Otter Project (CUOP). The study analysed the concentrations of 16 metals and semi-metals in the livers of 107 Eurasian otters (Lutra lutra) that had been found dead in 2007 and 2008 and collected by the CUOP. This aim of this work was to determine the current concentrations of inorganic elements accumulated by otters and whether exposure to heavy metals (lead, mercury, cadmium) in particular is likely to be associated with adverse effects. This is the first study of inorganic elements in otter livers from Europe for nearly 10 years. The otters that were analysed were from England and Wales and included adult and subadult males and females. Liver tissue was analysed using Inductively Coupled Plasma mass spectrometry (ICP-MS) techniques. The concentrations of inorganic elements measured in the present study were within the range previously reported for Eurasian otters in Britain and elsewhere in Europe. Concentrations varied with age and/or sex for some elements. For the heavy metals mercury and cadmium, liver concentrations generally increased with age whereas for lead, juveniles generally had higher liver lead concentrations than adults although for lead these difference were not statistically significant. Aluminium and chromium were the only elements that varied significantly in concentrations between years. It is unclear whether the inter-year variation in aluminium and chromium represent significant inter-year changes in exposure and/or accumulation or may simply reflect local-scale variation in the provenance of otters and their associated exposure. The liver concentrations of heavy metals (mercury, cadmium and lead) in all the otters analysed were below those associated with toxic effects in mammals, although liver lead concentrations in a small number of otters were close to the level of concern

    Trypanosome invasion of mammalian cells requires activation of the TGFβ signaling pathway

    Get PDF
    AbstractTrypanosoma cruzi invades most nucleated mammi lian cells by as yet unknown mechanisms. We repoi here that while T. cruzi attaches to epithelial cells lacl ing signaling transforming growth factor β (TGFβ) receptor I or II, the adherent parasites cannot penetrat and replicate inside the mutant cells, as they do i parental cells. Invasion of the mutants is restored by transfection with the TGFβ receptor genes, as are biological responses to TGFβ. Similar rescue of bot TGFβ antiproliferative response and T. cruzi invasio was demonstrated in a hybrid of TGFβ-resistant bladder and colon carcinoma cells. In addition, T. cruzi di not efficiently invade epithelial cells with dysfunctio of the intracellular signaling cascade caused by th constitutive expression of the cyclin-dependent kinas cdk4 or of the oncogene H-ras. Treatment with TGFβ, but not with other anti proliferative agents of nor phagocytic cells, greatly enhances T. cruzi invasior Moreover, infective, but not noninfective, trypanosome strongly induce a TGFβ-responsive reporter gene i TGFβ-sensitive, but not in TGFβ-insensitive, cell line: Thus, T. cruzi itself may directly trigger activation of the TGFβ signaling pathway required for parasite entr into the mammalian cells

    Fontes não convencionais de fósforo para gado zebu no Brasil

    Get PDF
    To evaluate non-conventional phosphorus sources, a group of 400 Nellore cows mantained under pasture received a mineral mixture with different P sources (group I: superphosphate - 500 ppm P; group II: superphosphate - 340 ppm P plus rock phosphate Patos 160 ppm P; group III: superphosphate 340 ppm P plus dicalcium phosphate 160 ppm P; group IV - dicalcium phosphate 500 ppm P). There were no differences in pregnancy rate, calving rate and calving interval. A fluorine deposition in bone was observed for the treatments with superphosphate and rock phosphate (66.92 ± 15.53; 69.97 ± 6.5 and 64.05 ± 3.35% respectively for group I, II and III). Superphosphate was almost as good dicalcium phosphate to provide phosphorus for grazing cows and there was a potentially significant economic advantage over dicalcium phosphate.Quatrocentas vacas Nelore, mantidas em pastagem, receberam mistura mineral contendo fontes não convencionais de fósforo (grupo I - 500 ppm P-superfosfato triplo; grupo II - 340 ppm P como superfosfato e 160 ppm P como rocha Patos; grupo III - 340 ppm P como superfosfato e 160 ppm P como fosfato bicálcico; grupo IV -500 ppm P como fosfato bicálcico). Não se verificou diferenças na taxa de prenhez, porcentagem de nascimento e intervalo entre partos. Observou-se que houve maior concentração de flúor nos ossos para o tratamento com fosfato de rocha. O superfosfato triplo apresentou-se como fonte adequada de P e mostrou vantagem econômica em relação ao bicálcico

    Anurans Of The Municipality Of Barão De Monte Alto, State Of Minas Gerais, Southeastern Brazil

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)We present a list of the anuran amphibians from municipality of Barão de Monte Alto, state of Minas Gerais, southeastern Brazil. This region is part of the remaining Atlantic Forest and the studied environments are represented by forest patches and open habitats. We recorded 29 anuran species, many of these typical and/or endemic to the Atlantic Forest. None of the species registered was considered under threat of extinction in state, national or international red-lists. It is worth noting, however, the presence of the tree frogs Dendropsophus pseudomeridianus, the first record of this species in the state of Minas Gerais, and D. Bipunctatus, marking its expanded distribution in various locations of Minas Gerais. The present list examines zoogeography and conservation of anurans in the Brazilian southeast and broadens the knowledge of the anuran fauna in this region. © 2016 Check List and Authors.125CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Liver concentrations of flame retardants in Eurasian otters (Lutra lutra) collected from Scotland between 2013 and 2015: a Predatory Bird Monitoring Scheme (PBMS) report

    Get PDF
    The Predatory Bird Monitoring Scheme (PBMS; http://pbms.ceh.ac.uk/) is the umbrella project that encompasses the Centre for Ecology & Hydrology’s National Capability contaminant monitoring and surveillance work on avian predators. By monitoring sentinel vertebrate species, the PBMS aims to detect and quantify current and emerging chemical threats to the environment and in particular to vertebrate wildlife. The current study presents the results of a study in which the concentrations of polybrominated diphenyl ethers (PBDEs) were determined in the livers of a small sample of Eurasian otters (Lutra lutra) that died in Scotland between 2013 and 2015. The principle aim of this work was to determine the current concentrations of PBDEs that are accumulated by otters in Scotland and whether these concentrations are likely to cause adverse effects in those individuals analysed. The otters that were analysed included adult and sub-adult, males and females although there were insufficient sample numbers to test for differences among these demographic groups. Liver tissue was analysed using Gas Chromatograph – Mass Spectrometry (GC-MS). PBDEs were detected in all otter livers analysed, with congeners BDE47, BDE153 and BDE100 dominant in the congener profile. The toxicological consequences of exposure to PBDEs in otters are uncertain given the lack of established links between liver PBDE concentrations and health effects in this species but concentrations were lower than those associated with adverse effects in mink. The general low levels of PBDEs suggests that there is little evidence to date of toxicologically significant contamination of Scottish otters with these compounds. There is clear evidence that Scottish otters have significantly lower residues of the less-brominated PBDEs than those previously measured in otters from England and Wales. However, these results may not be representative of otters from throughout Scotland as the present sample came predominantly from the Inner Hebrides

    Respiratory evaluation through volumetric capnography among grade III obese and eutrophic individuals: a comparative study

    Get PDF
    sem informaçãoExcess trunk body fat in obese individuals influences respiratory physiological function. The of this study were to compare volumetric capnography findings (VCap) between severely obese patients and normal-weight subjects and to assess whether there is a1372177183sem informaçãosem informaçãosem informaçã

    A Comparison between Dual Phase Steel and Interstitial Free Steel Due To the Springback Effect

    Get PDF
    International audienceThis is a study of the springback effect on two kinds of high strength steel, which are: dualphase and interstitial free, currently used as feedstock in the production of vehicles. The mechanical characterization of the springback effect was performed by means of a mechanical conformation test, called three-point air bending, performed by adapting it to the unconstrained cylindrical bending test. It was also evaluated the mechanical properties of the material defined by the tensile test in order to determine its tensile strength, yield strength, and elongation. Furthermore, it was performed a microstructural characterization of advanced steels by identifying and quantifying the present phases in coexistence by means of digital image processing. The results indicate that the springback effect in the dual-phase steel has the highest springback rates due to its high mechanical strength, and it causes a decrease in the aspect ratio of the grains that suffered mechanical conformation attempting to return it to its original form. On the other hand, the springback effect has the lowest rates, and the change in aspect ratio depends only on the interstitial free steel elongation capacity due to its lower mechanical strength

    Overall Picture Of Expressed Heat Shock Factors In Glycine Max, Lotus Japonicusand Medicago Truncatula

    Get PDF
    Heat shock (HS) leads to the activation of molecular mechanisms, known as HS-response, that prevent damage and enhance survival under stress. Plants have a flexible and specialized network of Heat Shock Factors (HSFs), which are transcription factors that induce the expression of heat shock proteins. The present work aimed to identify and characterize the Glycine maxHSF repertory in the Soybean Genome Project (GENOSOJA platform), comparing them with other legumes (Medicago truncatulaand Lotus japonicus) in view of current knowledge of Arabidopsis thaliana. The HSF characterization in leguminous plants led to the identification of 25, 19 and 21 candidate ESTs in soybean, Lotusand Medicago, respectively. A search in the SuperSAGE libraries revealed 68 tags distributed in seven HSF gene types. From the total number of obtained tags, more than 70% were related to root tissues (water deficit stress libraries vs.controls), indicating their role in abiotic stress responses, since the root is the first tissue to sense and respond to abiotic stress. Moreover, as heat stress is related to the pressure of dryness, a higher HSF expression was expected at the water deficit libraries. On the other hand, expressive HSF candidates were obtained from the library inoculated with Asian Soybean Rust, inferring crosstalk among genes associated with abiotic and biotic stresses. Evolutionary relationships among sequences were consistent with different HSF classes and subclasses. Expression profiling indicated that regulation of specific genes is associated with the stage of plant development and also with stimuli from other abiotic stresses pointing to the maintenance of HSF expression at a basal level in soybean, favoring its activation under heat-stress conditions. © 2012, Sociedade Brasileira de Genética.35SUPPL.1247259Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Baniwal, S.K., Chan, K.Y., Scharf, K.-D., Nover, L., Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4* (2007) J Biol Chem, 282, pp. 3605-3613Bharti, K., Schimidt, E., Lyck, R., Bublak, D., Scharf, K.-D., Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum (2000) Plant J, 22, pp. 355-365Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P., Tintschl-Körbitzer, A., Treuter, E., Nover, L., Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP (2004) Plant Cell, 16, pp. 1521-1535Efeoglu, B., Heat shock proteins and heat shock response in plants (2009) G U J Sci, 22, pp. 67-75Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., Cluster analysis and display of genome-wide expression patterns (1998) Proc Natl Acad Sci USA, 95, pp. 14863-14868Fehr, W.R., Caviness, C.E., Burmood, D.T., Pennington, I.S., Stage of development descriptions for soybeans, Glycine max (L.) Merrill (1971) Crop Sci, 11, pp. 929-931Fehr, W.R., Caviness, C.E., (1977) Stage of Soybean Development, p. 12. , Special Report n. 80. Ames, Iowa State University of Science and Technology, IowaGlombitza, S., Dubuis, P.-H., Thulke, O., Welzl, G., Bovet, L., Götz, M., Affenzeller, M., Asnaghi, C., Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism (2004) Plant Mol Biol, 54, pp. 817-835Heerklotz, D., Doring, P., Bonzelius, F., Winkelhaus, S., Nover, L., The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2 (2001) Mol Cell Biol, 21, pp. 1759-1768Hoagland, D., Arnon, D.I., The water culture method for growing plants without soil (1950) Calif Agric Exp Stn Circ, 347, pp. 1-32Hsu, S.-F., Lai, H.-C., Jinn, T.-L., Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis (2010) Plant Physiol, 153, pp. 773-784Hu, W., Hu, G., Han, B., Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice (2009) Plant Sci, 176, pp. 583-590Kido, E.A., Barbosa, P.K., Ferreira Neto, J.C.R., Pandolfi, V., Houllou-Kido, L.M., Crovella, S., Benko-Iseppon, A.M., Identification of plant protein kinases in response to abiotic and biotic stresses using SuperSAGE (2011) Curr Prot Pept Sci, 12, pp. 643-656Kotak, S., Port, M., Ganguli, A., Bicker, F., von Koskull-Doring, P., Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class a Hsfs with AHA and NES motifs essential for activator function and intracellular localization (2004) Plant J, 39, pp. 98-112Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., Scharf, K.D., Complexity of the heat stress response in plants (2007) Curr Opin Plant Biol, 10, pp. 310-316Li, H.-Y., Chang, C.-S., Lu, L.-S., Liu, C.-A., Chan, M.-T., Charng, Y.-Y., Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato (2004) Bot Bull Acad Sin, 44, pp. 129-140Li, M., Berendzen, K.W., Schoffl, F., Promoter specificity and interactions between early and late Arabidopsis heat shock factors (2010) Plant Mol Biol, 73, pp. 559-567McClean, P.E., Mamidi, S., McConnell, M., Chikara, S., Lee, R., Synteny mapping between common bean and soybean reveals extensive blocks of shared loci (2010) BMC Genomics, 11, pp. e184Miller, G., Mittler, R., Could heat shock transcription factors function as hydrogen peroxide sensors in plant? (2006) Ann Bot, 98, pp. 279-288Mittal, D., Chakrabarti, S., Sarkar, A., Singh, A., Grover, A., Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses (2009) Plant Physiol Biochem, 47, pp. 785-795Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.-S.P., In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean (2009) DNA Res, 16, pp. 353-369Mochida, K., Yoshida, T., Sakurai, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.-S.P., LegumeTFDB: An in-tegrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors (2009) Bioinformatics, 26, pp. 290-291Nascimento, L.C., Costa, G.G.L., Binneck, E., Pereira, G.A.G., Caraz-Zolle, M.F., A web-based bioinformatics interface applied to Genosoja Project: Databases and pipelines (2012) Genet Mol Biol, 35 (SUPPL. 1), pp. 203-211Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., Scharf, K.-D., Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? (2001) Cell Stress Chap, 6, pp. 177-189Pirkkala, L., Nykanen, I., Sistonen, L., Roles of the heat shock transcription factors in regulation of the heat shock response and beyond (2001) FASEB J, 15, pp. 1118-1131Ruelland, E., Zachowski, A., How plants sense temperature (2010) Environ Exp Bot, 69, pp. 225-232Sato, Y., Yokoya, S., Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7 (2008) Plant Cell Rep, 27, pp. 329-334Scharf, K.-D., Rose, S., Thierfelder, J., Nover, L., Two cDNAs for tomato heat stress transcription factors (1993) Plant Physiol, 102, pp. 1355-1356Scharf, K.-D., Rose, S., Zott, W., Schoffl, F., Nover, L., Three tomato genes code for heat stress transcription factors with a regionofremarkable homology to the DNA-binding domain of the yeast HSF (1990) EMBO J, 9, pp. 4495-4501Schöff, F., Prändl, R., Reindl, A., Regulation of the heat-shock response (1998) Plant Physiol, 117, pp. 1135-1141Sung, D.-Y., Kaplan, F., Lee, K.-J., Guy, C.L., Acquired tolerance to temperature extremes (2003) Trends Plant Sci, 8, pp. 179-187Swindell, W.R., Huebner, M., Weber, A.P., Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways (2007) BMC Genomics, 8, pp. e125Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Treshow, M., (1970) Environment and Plant Response, p. 421. , McGraw-Hill Company, New YorkTreuter, E., Nover, L., Ohme, K., Scharf, K.-D., Promoter specificity and deletion analysis of three tomato heat stress transcription factors (1993) Mol Gen Genet, 240, pp. 113-125Yamada, K., Fukao, Y., Hayashi, M., Fukazawa, M., Suzuki, I., Nishimura, M., Cytosolic HSP90 regulated the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana (2007) J Biol Chem, 282, pp. 37794-3780

    Anticoagulant rodenticides in red kites (Milvus milvus) in Britain in 2017 and 2018

    Get PDF
    Second generation anticoagulant rodenticides (SGARs) can be toxic to all mammals and birds. Various studies have shown that, in Britain, there is widespread exposure to SGARs in a diverse range of predatory mammals and birds, including red kites (Milvus milvus) which scavenge dead rats, a target species for rodent control. The Wildlife Incident Monitoring Scheme (WIIS) and the Predatory Bird Monitoring Scheme (PBMS) have shown that some mortalities result from this secondary exposure. In the present study, we analysed liver SGAR residues in 77 red kites that had been found dead in Britain in either 2017 or 2018. The carcasses were submitted to and necropsied by the Disease Risk Analysis and Health Surveillance (DRAHS) programme, the PBMS, the WIIS for England & Wales, the WIIS for Scotland and the Raptor Health Scotland study; the livers from the kites were subsequently analysed for SGAR residues. All the organisations are partners in the WILDCOMS network that promotes collaboration among surveillance schemes that monitor disease and contaminants in vertebrate wildlife. All of the 66 kites from England & Wales and 10 of the 11 red kites from Scotland had detectable liver residues of at least one SGAR. When considering the sample of kites as a whole, brodifacoum, difenacoum and bromadiolone were each detected in 73, 71 and 60 kites, respectively. Difethialone was found in 11 individuals while flocoumafen was detected in only one bird. Sum liver SGAR concentrations ranged between non-detected and 1218 ng/g wet wt. (arithmetic mean: 246 ng/g, median 154 ng/g). Post-mortem examinations indicated that 13 (16.8%) of red kites examined had internal haemorrhaging that was not associated with detectable trauma and had detectable liver SGAR concentrations. These birds had sum SGAR liver concentrations that ranged from 135 ng/g wet weight to 1218 ng/g wet weight. SGARs were considered a contributory cause of death in these cases. The stewardship scheme for anticoagulant rodenticides came fully into force in mid-2016 as re-registration of products for use in the UK was completed. A key aim is to reduce exposure of non-target wildlife to anticoagulant rodenticides but stewardship also aims to maintain efficacious rat control and so the number and density of AR-contaminated rats may remain unchanged. However, diligent searching, removal and safe disposal of poisoned rats, as promoted by stewardship, might be expected to reduce the availability of poisoned dead rats to red kites [and other scavengers] and thereby reduce the proportion of birds that are exposed and/or the magnitude of exposure. Concomitant with stewardship was a relaxation of the indoor use only restriction previously applied to brodifacoum, flocoumafen and difethialone, the three most acutely toxic SGARs. Any consequent increase in outdoor use of these three SGARs could increase the risk of secondary exposure in red kites. We therefore compared the data in the current report with that collected in 2015 and 2016 to determine if there was any evidence of a change in pattern or magnitude of exposure in red kites that might be connected to stewardship and/or change in usage restriction. The proportion of red kites exposed to SGARs in 2015 (90.6%), 2016 (89.6%) 2017 (96,4%) and 2018 (100%) was always 90% or more; the higher percentages in 2017 and 2018 were principally due to a greater proportion of birds from Scotland containing residues. Brodifacoum and difenacoum were the most prevalent compounds (89% of red kites across the four years for each compound) along with bromadiolone (75%). On average, there were residues of three different SGARs in each kite liver. There was no significant difference between years in liver sum (Σ) SGAR concentrations. We investigated if there was a change between years in the exposure of red kites to brodifacoum, flocoumafen and difethialone, the compounds for which indoor only usage restrictions were relaxed in 2016. To enable statistical analysis of data on residue prevalence, it was necessary to pool the data into two-year blocks. Data on presence/absence of detectable brodifacoum, flocoumafen or difethialone residues were therefore compared for 2015/16 (pre and year of implementation of change in usage restriction) and 2017/18 (post-change in usage restriction). The proportion of red kites with detectable residues was 82% (50 out of 61 red kites) in 2015/16 but significantly higher (95%; 73 out of 77 red kites) in 2017/18. However, there was also an increase [albeit not statistically significant] in the proportion of red kites with detectable liver difenacoum or bromadiolone residues (90% in 2015/16 vs. 97% in 2017/18). Therefore, these data may simply reflect an increase in the prevalence of exposure to SGARs generally rather than any effect of change in usage restriction. There was no difference between the four years in the summed magnitude of liver brodifacoum, difethialone and flocoumafen concentrations. The percentage of red kites examined that were diagnosed as birds in which SGARs were implicated as a contributory cause of death did not differ significantly between individual years nor show a significant trend across the years; the overall average across the four years was 22%. However, if data were pooled by pairs of years (2017/8 vs 2015/16), the proportion of red kites for which SGARs were implicated as a contributory cause of death was lower (18%) in 2017/18 than in 2015/16 (33%) for red kites from England & Wales. Our findings do not indicate that there has been any reduction in exposure in red kites to SGARs following implementation of stewardship, in terms of either the proportion of individuals exposed or the magnitude of residues detected. There is some evidence (depending upon the statistical approach used) that the proportion of red kites in which SGARs were implicated as a contributory mortality factor has decreased in more recent years. There was no clear evidence that relaxation of usage restrictions on brodifacoum, difethialone and flocoumafen has altered the pattern of residue accumulation in red kites to date
    corecore