19 research outputs found

    Renormalization group and nonequilibrium action in stochastic field theory

    Full text link
    We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion.Comment: 33 pages, 3 figures included in the text. Revised; one reference adde

    Noise induced transitions in semiclassical cosmology

    Get PDF
    A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field, which consists basically of a non local term due to gravitational particle creation and a noise term induced by the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the classical potential so that if the universe starts near zero scale factor (initial singularity) it can make the transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it turns out to be comparable with the probability that the universe tunnels from "nothing" into an inflationary stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the spacetime should not be neglected in quantum cosmology.Comment: LaTex, 33.tex pages, no figure

    Shear Viscosity in the O(N) Model

    Full text link
    We compute the shear viscosity in the O(N) model at first nontrivial order in the large N expansion. The calculation is organized using the 1/N expansion of the 2PI effective action (2PI-1/N expansion) to next-to-leading order, which leads to an integral equation summing ladder and bubble diagrams. We also consider the weakly coupled theory for arbitrary N, using the three-loop expansion of the 2PI effective action. In the limit of weak coupling and vanishing mass, we find an approximate analytical solution of the integral equation. For general coupling and mass, the integral equation is solved numerically using a variational approach. The shear viscosity turns out to be close to the result obtained in the weak-coupling analysis.Comment: 37 pages, few typos corrected; to appear in JHE

    Magnetic field generation from non-equilibrium phase transitions

    Get PDF
    We study the generation of magnetic fields during the stage of particle production resulting from spinodal instabilities during phase transitions out of equilibrium. The main premise is that long-wavelength instabilities that drive the phase transition lead to strong non-equilibrium charge and current fluctuations which generate electromagnetic fields. We present a formulation based on the non-equilibrium Schwinger-Dyson equations that leads to an exact expression for the spectrum of electromagnetic fields valid for general theories and cosmological backgrounds and whose main ingredient is the transverse photon polarization out of equilibrium. This formulation includes the dissipative effects of the conductivity in the medium. As a prelude to cosmology we study magnetogenesis in Minkowski space-time in a theory of N charged scalar fields to lowest order in the gauge coupling and to leading order in the large N within two scenarios of cosmological relevance. The long-wavelength power spectrum for electric and magnetic fields at the end of the phase transition is obtained explicitly. It follows that equipartition between electric and magnetic fields does not hold out of equilibrium. In the case of a transition from a high temperature phase, the conductivity of the medium severely hinders the generation of magnetic fields, however the magnetic fields generated are correlated on scales of the order of the domain size, which is much larger than the magnetic diffusion length. Implications of the results to cosmological phase transitions driven by spinodal unstabilities are discussed.Comment: Preprint no. LPTHE 02-55, 30 pages, latex, 2 eps figures. Added one reference. To appear in Phys. Rev.

    Transport coefficients from the 2PI effective action

    Full text link
    We show that the lowest nontrivial truncation of the two-particle irreducible (2PI) effective action correctly determines transport coefficients in a weak coupling or 1/N expansion at leading (logarithmic) order in several relativistic field theories. In particular, we consider a single real scalar field with cubic and quartic interactions in the loop expansion, the O(N) model in the 2PI-1/N expansion, and QED with a single and many fermion fields. Therefore, these truncations will provide a correct description, to leading (logarithmic) order, of the long time behavior of these systems, i.e. the approach to equilibrium. This supports the promising results obtained for the dynamics of quantum fields out of equilibrium using 2PI effective action techniques.Comment: 5 pages, explanation in introduction expanded, summary added; to appear in PR

    Transport coefficients in high temperature gauge theories: (II) Beyond leading log

    Get PDF
    Results are presented of a full leading-order evaluation of the shear viscosity, flavor diffusion constants, and electrical conductivity in high temperature QCD and QED. The presence of Coulomb logarithms associated with gauge interactions imply that the leading-order results for transport coefficients may themselves be expanded in an infinite series in powers of 1/log(1/g); the utility of this expansion is also examined. A next-to-leading-log approximation is found to approximate the full leading-order result quite well as long as the Debye mass is less than the temperature.Comment: 38 pages, 6 figure

    Decoherence of Histories and Hydrodynamic Equations for a Linear Oscillator Chain

    Full text link
    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse-grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally-induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities.Comment: 37 pages, RevTe

    Large scale magnetogenesis from a non-equilibrium phase transition in the radiation dominated era

    Full text link
    We study the generation of large scale primordial magnetic fields by a cosmological phase transition during the radiation dominated era. The setting is a theory of N charged scalar fields coupled to an abelian gauge field, that undergoes a phase transition at a critical temperature much larger than the electroweak scale. The dynamics after the transition features two distinct stages: a spinodal regime dominated by linear long-wavelength instabilities, and a scaling stage in which the non-linearities and backreaction of the scalar fields are dominant. This second stage describes the growth of horizon sized domains. We implement a recently introduced formulation to obtain the spectrum of magnetic fields that includes the dissipative effects of the plasma. We find that large scale magnetogenesis is very efficient during the scaling regime. The ratio between the energy density on scales larger than L and that in the background radiation r(L,T) = rho_B(L,T)/rho_{cmb}(T) is r(L,T) \sim 10^{-34} at the Electroweak scale and r(L,T) \sim 10^{-14} at the QCD scale for L \sim 1 Mpc. The resulting spectrum is insensitive to the magnetic diffusion length. We conjecture that a similar mechanism could be operative after the QCD chiral phase transition.Comment: LaTex, 25 pages, no figures, to appear in Phys. Rev.

    Schwinger-Dyson approach to non-equilibrium classical field theory

    Get PDF
    In this paper we discuss a Schwinger-Dyson [SD] approach for determining the time evolution of the unequal time correlation functions of a non-equilibrium classical field theory, where the classical system is described by an initial density matrix at time t=0t=0. We focus on λϕ4\lambda \phi^4 field theory in 1+1 space time dimensions where we can perform exact numerical simulations by sampling an ensemble of initial conditions specified by the initial density matrix. We discuss two approaches. The first, the bare vertex approximation [BVA], is based on ignoring vertex corrections to the SD equations in the auxiliary field formalism relevant for 1/N expansions. The second approximation is a related approximation made to the SD equations of the original formulation in terms of ϕ\phi alone. We compare these SD approximations as well as a Hartree approximation with exact numerical simulations. We find that both approximations based on the SD equations yield good agreement with exact numerical simulations and cure the late time oscillation problem of the Hartree approximation. We also discuss the relationship between the quantum and classical SD equations.Comment: 36 pages, 5 figure

    A Step Beyond the Bounce: Bubble Dynamics in Quantum Phase Transitions

    Full text link
    We study the dynamical evolution of a phase interface or bubble in the context of a \lambda \phi^4 + g \phi^6 scalar quantum field theory. We use a self-consistent mean-field approximation derived from a 2PI effective action to construct an initial value problem for the expectation value of the quantum field and two-point function. We solve the equations of motion numerically in (1+1)-dimensions and compare the results to the purely classical evolution. We find that the quantum fluctuations dress the classical profile, affecting both the early time expansion of the bubble and the behavior upon collision with a neighboring interface.Comment: 12 pages, multiple figure
    corecore