2,014 research outputs found

    Mechanism of tribo-chemical reactions of ionic liquids on titanium alloys

    Get PDF
    In this paper, the tribological, the tribo-chemical reaction mechanisms and desorption properties of three ionic liquids (ILs), [Bu3MeP][ Tf2N], [Bu3MeN][ Tf2N] and [Bu3MeP][ (MeO)2PO2], in contact with titanium and under vacuum conditions are studied with the CATRI © UHV Tribometer developed by IK4-TEKNIKER [1]. The two ILs containing the bis(trifluoromethanesulfonyl)amide anion presented lower coefficient of friction compared to that having the dimethyl phosphate anion. The tribodesorption study revealed that it is required an induction period to decrease the friction coefficient. The end of this period is accelerated in the case of trifluoromethane ionic liquids by the CF3+ release. Hence, the CF3+ reacts with the titanium surface generating a titanium fluoride tribolayer that could act like a catalyst to generate the tribodesorption of ionic liquid cation fragments (CH3+, C2H5+, C3H7+, C4H9+). The XPS analysis confirmed the generation of a boundary film, comprising of sulfide and inorganic fluoride, and being possibly the responsible of decreasing the friction coefficient. The [Bu3MeP][MeO)2PO2] ionic liquid required a long induction period, it did not form any tribolayer and no reduction of friction coefficient, yielding instead a high abrasion and adhesion mechanism. Thus, it can be concluded that bis(trifluoromethanesulfonyl)amide anion is more effective than dimethylphosphate in generating a surface protective film on the titanium surface under the selected test conditions and the testing methodology seems to be useful to understand the tribodesorption mechanism.The partners would like to acknowledge the financing to the Austrian Government financing of COMET K2 Excellence Centre of Tribology called X-Tribology to carry out this research collaborative activity. The authors also would like to acknowledge the financing of the EMAITEK Programme by the Basque Country

    Spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions as the exactly soluble zero-field eight-vertex model

    Full text link
    The spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions is exactly solved by establishing a precise mapping relationship with the corresponding zero-field (symmetric) eight-vertex model. It is shown that the Ising-Heisenberg model with the ferromagnetic Heisenberg interaction exhibits a striking critical behavior, which manifests itself through re-entrant phase transitions as well as continuously varying critical exponents. The changes of critical exponents are in accordance with the weak universality hypothesis in spite of a peculiar singular behavior to emerge at a quantum critical point of the infinite order, which occurs at the isotropic limit of the Heisenberg interaction. On the other hand, the Ising-Heisenberg model with the antiferromagnetic Heisenberg interaction surprisingly exhibits less significant changes of both critical temperatures as well as critical exponents upon varying a strength of the exchange anisotropy in the Heisenberg interaction.Comment: 11 pages, 9 figure

    Wang-Landau study of the random bond square Ising model with nearest- and next-nearest-neighbor interactions

    Full text link
    We report results of a Wang-Landau study of the random bond square Ising model with nearest- (JnnJ_{nn}) and next-nearest-neighbor (JnnnJ_{nnn}) antiferromagnetic interactions. We consider the case R=Jnn/Jnnn=1R=J_{nn}/J_{nnn}=1 for which the competitive nature of interactions produces a sublattice ordering known as superantiferromagnetism and the pure system undergoes a second-order transition with a positive specific heat exponent α\alpha. For a particular disorder strength we study the effects of bond randomness and we find that, while the critical exponents of the correlation length ν\nu, magnetization β\beta, and magnetic susceptibility γ\gamma increase when compared to the pure model, the ratios β/ν\beta/\nu and γ/ν\gamma/\nu remain unchanged. Thus, the disordered system obeys weak universality and hyperscaling similarly to other two-dimensional disordered systems. However, the specific heat exhibits an unusually strong saturating behavior which distinguishes the present case of competing interactions from other two-dimensional random bond systems studied previously.Comment: 9 pages, 3 figures, version as accepted for publicatio

    Two dimensional Ising spin glasses with non-zero ordering temperatures

    Get PDF
    We demonstrate numerically that for Ising spins on square lattices with ferromagnetic second neighbour interactions and random near neighbour interactions, two dimensional Ising spin glass order with a non-zero freezing temperature can occur. We compare some of the physical properties of these spin glasses with those of standard spin glasses in higher dimensions.Comment: 9 page latex file and 9 ps figures. To appear in Phys. Rev. Let

    Quenched bond randomness in marginal and non-marginal Ising spin models in 2D

    Full text link
    We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square model with nearest- and next-nearest-neighbor competing interactions and the corresponding version of the simple Ising model are studied and their general universality aspects are inspected by a detailed finite-size scaling (FSS) analysis. We find that, the random bond SAF model obeys weak universality, hyperscaling, and exhibits a strong saturating behavior of the specific heat due to the competing nature of interactions. On the other hand, for the random Ising model we encounter some difficulties for a definite discrimination between the two well-known scenarios of the logarithmic corrections versus the weak universality. Yet, a careful FSS analysis of our data favors the field-theoretically predicted logarithmic corrections.Comment: 19 pages, 5 figures, final versio

    Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model

    Full text link
    We consider Hermitian and symmetric random band matrices HH in d1d \geq 1 dimensions. The matrix elements HxyH_{xy}, indexed by x,yΛZdx,y \in \Lambda \subset \Z^d, are independent, uniformly distributed random variables if \abs{x-y} is less than the band width WW, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian HH is diffusive on time scales tWd/3t\ll W^{d/3}. We also show that the localization length of an arbitrarily large majority of the eigenvectors is larger than a factor Wd/6W^{d/6} times the band width. All results are uniform in the size \abs{\Lambda} of the matrix.Comment: Minor corrections, Sections 4 and 11 update

    The development and characteristics of a hand-held high power diode laser-based industrial tile grout removal and single-stage sealing system

    Get PDF
    As the field of laser materials processing becomes ever more diverse, the high power diode laser (HPDL) is now being regarded by many as the most applicable tool. The commercialisation of an industrial epoxy grout removal and single-stage ceramic tile grout sealing process is examined through the development of a hand-held HPDL device in this work. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given. The paper describes the characteristics and feasibility of the industrial epoxy grout removal process. A minimum power density of approximately 3 kW/cm2 was found to exist, whilst the minimum interaction time, below which there was no removal of epoxy tile grout, was found to be approximately 0.5 s. The maximum theoretical removal rate that may be achievable was calculated as being 65.98 mm2/s for a circular 2 mm diameter beam with a power density of 3 kW/cm2 and a traverse speed of 42 mm/s. In addition, the characteristics of the single-stage ceramic tile grout sealing are outlined. The single-stage ceramic tile grout sealing process yielded crack and porosity free seals which were produced in normal atmospheric conditions. Tiles were successfully sealed with power densities as low as 550 W/cm2 and at rates of up to 420 mm/min. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves

    Kinetics of exciton photoluminescence in type-II semiconductor superlattices

    Full text link
    The exciton decay rate at a rough interface in type-II semiconductor superlattices is investigated. It is shown that the possibility of recombination of indirect excitons at a plane interface essentially affects kinetics of the exciton photoluminescence at a rough interface. This happens because of strong correlation between the exciton recombination at the plane interface and at the roughness. Expressions that relate the parameters of the luminescence kinetics with statistical characteristics of the rough interface are obtained. The mean height and length of roughnesses in GaAs/AlAs superlattices are estimated from the experimental data.Comment: 3 PostScript figure

    ALPGEN, a generator for hard multiparton processes in hadronic collisions

    Get PDF
    This paper presents a new event generator, ALPGEN, dedicated to the study of multiparton hard processes in hadronic collisions. The code performs, at the leading order in QCD and EW interactions, the calculation of the exact matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and LHC data. The current version of the code describes the following final states: (W -> ffbar') QQbar+ N jets (Q being a heavy quark, and f=l,q), with N f fbar)+QQbar+Njets (f=l,nu), with N ffbar') + charm + N jets (f=l,q), N f fbar') + N jets (f=l,q) and (Z/gamma* -> f fbar)+ N jets (f=l,nu), with N<=6; nW+mZ+lH+N jets, with n+m+l+N<=8 and N<=3 including all 2-fermion decay modes of W and Z bosons, with spin correlations; Q Qbar+N jets (N b f fbar' decays and relative spin correlations included if Q=t; Q Qbar Q' Qbar'+N jets, with Q and Q' heavy quarks (possibly equal) and N b f fbar' decays and relative spin correlations included if Q=t; N jets, with N<=6. Parton-level events are generated, providing full information on their colour and flavour structure, enabling the evolution of the partons into fully hadronised final states.Comment: 1+38 pages, uses JHEP.cls. Documents code version 1.2: extended list of processes, updated documentation and bibliograph

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret
    corecore