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Two-Dimensional Ising Spin Glasses with Nonzero Ordering Temperatures
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We demonstrate numerically that, for Ising spins on square lattices with ferromagnetic second
neighbor interactions and random near neighbor interactions, two-dimensional Ising spin glass order
with a nonzero freezing temperature can occur. We compare some of the physical properties of these
spin glasses with those of standard spin glasses in higher dimensions. [S0031-9007(96)00432-2]

PACS numbers: 75.50.Lk, 64.60.Cn

In dimension two, an Ising spin glass (ISG) with mulant [4]. For sets of samples of different sizesthe
random near neighbor interactions does not order abovifuctuations of the autocorrelation functigiy) in equilib-
zero temperature [1,2]. Implicitly, this has been takenrium are recorded. The Binder cumulant at temperafure
to mean that two-dimensional (2D) ISGs with orderingis defined as
at finite temperatures do not exist. Here we show that 4
this assumption is unfounded by exhibiting a family of g(T) = l<3 — ﬂ) 1)
2D Ising systems with a different set of interactions, 2 (q**
which show spin glass ordering at finite temperaturesand is dimensionless; for sets of samples with fixed
We find that the physical properties of these 2D ISGL values, the series of curveg (T) as a function of
systems resemble closely those of standard ISGs in highéemperature intersect at the ordering temperature. We
dimensions. have carried out simulations using heat bath dynamics and

Consider a square lattice of Ising spins with secondequential spin by spin updates on samples up te 12.
nearest neighbor ferromagnetic interactions of strengtiive hundred samples were used at each size for each
J. This clearly consists of two interpenetrating butvalue of A, and standard precautions were taken to assure
noninteracting square sublattices which will each ordethat thermal equilibrium was achieved [4]. We show in
ferromagnetically at the Onsager Curie temperafiye=  Fig. 1 the g, data for three values of, and it can be
2.27J. Now introduce random near neighbor interactionsseen that for the smallest value there is a clear intersection
of strength+=AJ. At low temperatures when the spins point. ForA = 0.7 the g; curves come together without
are frozen, each sublattice will exert effective randomany clear fanning out at lower temperatures, but we
fields on the spins of the other sublattice. It is wellconsider that the meeting point represents the freezing
established [3] that a 2D Ising ferromagnet breaks ugemperature here also. Far= 1 it is hard to say if the
into finite size domains under the influence of a randonturves will intersect abové = 0. (Very similar behavior
field, however small. At low temperatures each sublatticavith almost unobservable fanning out bel@y is seen in
of the present system will then be ordered in randomh3D ISGs [2,4].) The behavior of the freezing temperature
arranged ferromagnetic domains of finite size. Howeveras a function ofA is shown in the inset of Fig. 2; at
in contrast to the true 2D random field Ising system, heresmall A, T, extrapolates back to the Onsageér and, with
the “effective random fields” will average to zero at highincreasing\, T, drops as might be expected, because for
temperatures, so we can expect a critical temperafre high enough we will recover the 2D random interaction
separating a high temperature paramagnetic regime [withear neighbor ISG with its zero temperature ordering. It
the autocorrelation functiop(r) relaxing to zero at long appears that the limiting value af for nonzeroT, is in
time ¢] from a low temperature regime whetgr) does the region of 1.0.
not go to zero, corresponding to ordering with a nonzero In conventional second order transitiong,(7.) has
Edwards-Anderson order parameter. Below we will showa universal value for all systems in a given class; for
numerical evidence that for small and moderateT, instance, for the 2D Ising ferromagnet the magnetism
is nonzero. In the low temperature state there is ndinder parameterg;,(T.) = 0.91603 [5], and we find
long range ferromagnetic order so the system is certainlthe autocorrelation Binder parameggn7.) = 0.42. We
not a ferromagnet; we will choose to call the frozencan note in Fig. 1 thag,(T,) changes withA, so, for
state a “spin glass,” although random systems with shoithe present systems of 2D ISGs, universality is not
range ferromagnetic or antiferromagnetic order are oftembeyed. For the range af that we have studieg (T, )
referred to as “cluster glasses” in an experimental contexappears to be tending regularly to a value near 1 as

One of the established numerical techniques for deterf, is tending to zero. At still highen values, g, (0)
mining the ordering temperature in ferromagnets and spiwill presumably tend to 0.83, which is the standard
glasses is through finite size scaling using the Binder cu2D *J ISG zero temperature value [2,4]. We can
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FIG. 2. The specific heat averaged over samples with 40

for A =0.5, 0.7, and 1.0 (circles, squares, and triangles,
respectively). Insetl, as a function ofa.
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o1 and smooth featureless behavior through the freezing tran-

sition. This is precisely what is observed for standard
10 5 20 25 30 as ISGs in dimension 3 [8], 4, and 5 [9], and appears to be a
© 1.0 Temperature universal characteristic of the ISG transition below the up-
per critical dimension. For the present systems the max-
imum of the specific heat corresponds to a saturation of
the ferromagnetic correlation length in each sublattice as
the sample is cooled; the ordering process can be thought
of as consisting of, first, the formation of finite size fer-
romagnetic domains, and then of a freezing at a lower
temperature where the domain movements are hindered
by the random near neighbor interactions.
Another parameter accessible from simulations is the
0.0 . . damage spreading [10]. Damage spreading is measured
0 " femperature 80 numerically by using heat bath dynamics and applying
_ _ ~ the same random update parameter at each update step to
E'Sr-] (;L'[el’lheerg:[]l?ti;l}lg?d/\ing%r g%m;'r%”tf gsrgsf“e”éﬂgl‘ of Sizgyo replicas of the same system(T) is defined as the
P R o Tesp Y normalized Hamming distance between the two replicas
(i.e., the fraction of spins having opposite orientations)
at long times when this protocol is applied. While
note that a closely related nonrandom 2D Ising systenferromagnets hav®(T) = 0 down toT,, standard I1SGs
having first and second neighbor interactions with regulahave been found to show nonzddgT’) until temperatures
frustration, shows nonuniversality of critical exponentswell aboveT, [10,11]; it has been pointed out that for
when a control parameter representing the ratio of the twéSGs in dimensions 3 and 4, as the temperature is reduced,
interaction strengths is varied [6]. There is also strongD(T) tends to }2 at a temperature very close &,
evidence for nonuniversality of the critical exponents in[11]. We have studied damage spreading in the present
canonical ISGs at dimension 3 and above [7]. We hav@D ISGs. Two random initial replicas of each 2D system
not yet estimated the values of the critical exponents fowere chosen; these replicas were annealed independently
the present family of 2D ISGs. to thermal equilibrium at each temperature, and then the
Once the existence of finite ordering temperatures islamage spreading procedure was applied for long times.
established, we can carry out simulations to measure thehe results, Fig. 3, show that the damage spreading
standard physical properties for these 2D ISGs in order ttemperatureT, where D(T) first becomes nonzero is
compare with those of other ISGs. In Fig. 2 we show themuch higher tharf,, and that in each case on cooling
specific heats for the same three valuesioflt can be D(T) tends to ¥2. For A = 0.5 this temperature is
seen that the specific heats show broad maxima at tempendistinguishable from th&, we have estimated from the
atures higher than the respective ordering temperatureBjnder cumulant dataD(T) then remains equal tg/2 for
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lower temperatures. The behavior is similar but less clear ’ Bt . 3 a4
cut for the other two values of (the lowest temperature iy
points may be slightly low because of the very long SRR
times needed to achieve complete thermal equilibrium). S Ly
The general behavior of the damage spreading parameter ", B
appears to be the same in these 2D ISGs as in ISGs in © -
dimensions 3 and 4. The use of the empirical criterion g : 'EE:'.

D(T,) = 1/2 gives a convenient method to chedk - .
values. o
An advantage of the present systems over conventional o

ISGs is that “snapshots” of the instantaneous configura- : L

tions of the spins are informative because we are in di- s '
mension 2. We show in Fig. 4 two snapshots of the same "

A = 0.5 system at temperaturé = 1.5, well below T,. . LR
The images were produced by slowly cooling two inde- *,..:, ﬁ:- B T
pendent random replicas of the same system by successive SR ¥ #-..- .
steps to the final temperature. As expected, there are four YOk .
types of domains: If we call one sublattideand the other . . TR

B, then the domains a up B up (white),A up B down FIG. 4. Snapshots of two replicas, B of the samel00 X
(white/black checkerboard} down B up (black/white), 100 sgin systorm withl — 0.3 At T = 1.5 after 10000 MCS
andA down B down (black). Here the domain sizes areanneal. The two replicas were cooled independently from two
typically 25 by 25 spins. (The simulations confirm thatinitially randomly chosen configurations. On each site, black
the typical domain size below, gets smaller as\ is is up and white is dov_vn. The third frame is thi dlffelr;ence
increased.) For this sample at this temperature, the twBetWeen the two configurations and B: black, §i" = S7
configurations are almost frozen; averaging over a furthe\f\'h'te’ Si = =S5
10000 Monte Carlo steps per spin (MCS) only blurs the

domain frontiers somewhat. To a good approximation,

the images then represent two Gibbs states of the systemphase space could resemble that of the Parisi solution of
By inspection it can be seen that the two states are nethe infinite range SK model [13].

ther quasi-identical, nor are they quasimirror images of In conclusion, we have demonstrated that 2D ISG sys-
each other with all the spins reversed. The detailed strudems with nonzero freezing temperatures exist. We have
tures of the two states are quite different, suggesting thathown data for a certain number of parameters for a new
there is an infinity (or at least a large number) of alternafamily of 2D ISGs, where we have found that the observed
tive Gibbs states for this ISG. This conclusion appears tdehavior is very similar to that seen in simulations on stan-
be incompatible with the two ground state images whichdard ISGs in dimension 3. A more comprehensive study
have been proposed heuristically for ISGs [12], but theof the 2D ISGs and a detailed comparison with results from
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