18,169 research outputs found

    Utilization of indigenous food plants in Uganda: A case study of south-western Uganda

    Get PDF
    The purpose of the study was to document and establish the traditional processin methods of indigenous food plants in Rukungiri district. In order to establish the status and level of utilization and processing of indigenous food plants in southwestern Uganda, a baseline survey was carried out using a participatory method of data collection. Respondents in Rukungiri district cited a total of 94 plants that were used for food. Some of the food plants were classified as indigenous to the area, while others were classified as exotic. The food types generally fell into five broad categories, namely; vegetables, fruits, roots/tubers, pulses and cereals. Vegetables and fruits were the most commonly used food plants and the Amaranths species were found to be the most popular vegetables, whereas wild plums (Carissa edulis) and gooseberries (Physalis minima) were cited among thepreferred fruit species. In spite of the fact that indigenous/traditional food plants have always ensured food security at the household level, the process of collecting them from the wild, their production,consumption and domestication was found to be on the decline in this area. This decline can be attributed to limited available knowledge on their nutritional content and to the emphasis that is placed on commercial, high yielding exotic plants by both the agricultural extension officers and farmers. The majority of farmers are only interested in the cultivation of crops from which they can earn an income, and because no one has cultivated indigenous food plants with the intention of earning an income from them, the plants have not proved their worth. Although the methods of utilization, especially food preparation, varied from one household to another, boiling, steaming and frying were very common and cross-cutting almost all the households. The principal mode of food preservation cited by households, especially for seeds, wassun drying

    Single Pulse Illumination of Multi-Layer Photoacoustic Holograms for Patterned Ultrasound Field Generation

    Get PDF
    A new method for the creation of patterned, focused, optically generated acoustic fields using a single optical pulse is introduced. This utilises multi-layer `holograms' composed of several spatially separate absorbing layers. Each layer is individually patterned so as to focus at a set of targeted points. To create the patterns, a ray-tracing model was implemented to calculate the impulse response of pixels within each absorbing layer to a set of targeted points. An optimisation approach was then used to find the optimal pattern for each layer to create a field evenly focused at each of the target points. The method was validated using both numerical simulations and acoustic field measurements. It was demonstrated that a 3×3 array of acoustic foci could be generated from a 3-layer hologram using a single laser pulse

    Forecasting the severity of the Newfoundland iceberg season using a control systems model

    Get PDF
    The iceberg hazard for the Grand Banks area to the east of Newfoundland varies dramatically from one year to the next. In some years no icebergs penetrate south of 48°N, while in others well over 1000 icebergs enter the main shipping lanes between Europe and NE North America. Advance knowledge of this seasonal hazard would have major implications for ship routing, as well as the resources required for maintaining an effective ice hazard service. Here, a Windowed Error Reduction Ratio control system identification approach is used to forecast the severity of the 2018 iceberg season off Newfoundland, in terms of the predicted number of icebergs crossing 48°N, as well as to hindcast iceberg numbers for 2017. The best estimates are for 766 ± 297 icebergs crossing 48°N before the end of September 2017 and 685 ± 207 for 2018. These are both above the recent observed average of 592 icebergs for that date, and substantially so for 2017. Given the bimodal nature of the annual iceberg number, this means that our predictions for both 2017 and 2018 are for a high iceberg season, with a 71% level of confidence. However, it is most likely that the 2018 iceberg numbers will be somewhat less than 1000, while our higher hindcast for 2017 is consistent with the observed level of 1008. Our verification analysis, covering the 20-year period up to 2016, shows our model's correspondence to the high or low nature of the 48°N iceberg numbers is statistically robust to the 0.05% level, with a skill level of 80%

    Synthesized grain size distribution in the interstellar medium

    Get PDF
    We examine a synthetic way of constructing the grain size distribution in the interstellar medium (ISM). First we formulate a synthetic grain size distribution composed of three grain size distributions processed with the following mechanisms that govern the grain size distribution in the Milky Way: (i) grain growth by accretion and coagulation in dense clouds, (ii) supernova shock destruction by sputtering in diffuse ISM, and (iii) shattering driven by turbulence in diffuse ISM. Then, we examine if the observational grain size distribution in the Milky Way (called MRN) is successfully synthesized or not. We find that the three components actually synthesize the MRN grain size distribution in the sense that the deficiency of small grains by (i) and (ii) is compensated by the production of small grains by (iii). The fraction of each {contribution} to the total grain processing of (i), (ii), and (iii) (i.e., the relative importance of the three {contributions} to all grain processing mechanisms) is 30-50%, 20-40%, and 10-40%, respectively. We also show that the Milky Way extinction curve is reproduced with the synthetic grain size distributions.Comment: 10 pages, 6 figures, accepted for publication in Earth, Planets, and Spac

    A white dwarf bound to the transiting planetary system WASP-98

    Get PDF
    WASP-98 is a planetary system containing a hot Jupiter transiting a late-G dwarf. A fainter star 12″ distant has previously been identified as a white dwarf, with a distance and proper motion consistent with a physical association with the planetary system. We present spectroscopy of the white dwarf, with the aim of determining its mass, radius and temperature and hence the age of the system. However, the spectra show the featureless continuum and lack of spectral lines characteristic of the DC class of white dwarfs. We therefore fitted theoretical white dwarf spectra to the ugriz apparent magnitudes and Gaia DR2 parallax of this object in order to determine its physical properties and the age of the system. We find that the system is old, with a lower limit of 3.6 Gyr, but theoretical uncertainties preclude a precise determination of its age. Its kinematics are consistent with membership of the thick disc, but do not allow us to rule out the thin-disc alternative. The old age and low metallicity of the system suggest it is subject to an age-metallicity relation, but analysis of the most metal-rich and metal-poor transiting planetary systems yields only insubstantial evidence of this. We conclude that the study of bound white dwarfs can yield independent ages to planetary systems, but such analysis may be better-suited to DA and DB rather than DC white dwarfs

    Persistence in epidemic metapopulations: quantifying the rescue effects for measles, mumps, rubella and whooping cough

    Get PDF
    Metapopulation rescue effects are thought to be key to the persistence of many acute immunizing infections. Yet the enhancement of persistence through spatial coupling has not been previously quantified. Here we estimate the metapopulation rescue effects for four childhood infections using global WHO reported incidence data by comparing persistence on island countries vs all other countries, while controlling for key variables such as vaccine cover, birth rates and economic development. The relative risk of extinction on islands is significantly higher, and approximately double the risk of extinction in mainland countries. Furthermore, as may be expected, infections with longer infectious periods tend to have the strongest metapopulation rescue effects. Our results quantitate the notion that demography and local community size controls disease persistence
    corecore