4,701 research outputs found

    Religious attitudes and home bias: theory and evidence from a pilot study

    Get PDF
    This paper examines the relationship between religion and home bias. We propose a simple theoretical framework that suggests that countries interacting via their representative individuals might show a certain degree of religion-driven international altruism that in turn affects trade. We test these predictions exploiting data from a survey on religious attitudes and individuals' preferences over consumption of home-produced versus foreign goods that we designed and carried out in 15 different countries. We find evidence that religious openness and home bias are negatively correlated. This appears to provide some support to the hypothesis that religious openness, through trust and altruism, may have a pro-trade effect.

    Modeling Normal and Pathological Ear Cartilage in vitro Using Somatic Stem Cells in Three-Dimensional Culture

    Get PDF
    Microtia (underdeveloped ear) is a rare congenital dysmorphology affecting the development of the outer ear. Although human microtic cartilage has not been fully characterized, chondrogenic cells derived from this tissue have been proposed as a suitable source for autologous auricular reconstruction. The aim of this study was to further characterize native microtic cartilage and investigate the properties of cartilage stem/progenitor cells (CSPCs) derived from it. Two-dimensional (2D) systems are most commonly used to assess the chondrogenic potential of somatic stem cells in vitro, but limit cell interactions and differentiation. Hence here we investigated the behavior of microtic CSPCs in three-dimensional spheroid cultures. Remarkable similarities between human microtic cartilages from five patients, as compared to normal cartilage, were observed notwithstanding possibly different etiologies of the disease. Native microtic cartilage displayed poorly defined perichondrium and hyper-cellularity, an immature phenotype that resembled that of the normal developing human auricular cartilage we studied in parallel. Crucially, our analysis of microtic ears revealed for the first time that, unlike normal cartilage, microtic cartilages are vascularized. Importantly, CSPCs isolated from human microtic and normal ear cartilages were found to recapitulate many characteristics of pathological and healthy tissues, respectively, when allowed to differentiate as spheroids, but not in monolayer cultures. Noteworthily, starting from initially homogeneous cell pellets, CSPC spheroids spontaneously underwent a maturation process in culture, and formed two regions (inner and outer region) separated by a boundary, with distinct cell types that differed in chondrogenic commitment as indicated by expression of chondrogenic markers. Compared to normal ear-derived spheroids, microtic spheroids were asymmetric, hyper-cellularized and the inner and outer regions did not develop properly. Hence, their organization resembled that of native microtic cartilage. Together, our results identify novel features of microtic ears and highlight the importance of 3D self-organizing in vitro systems for better understanding somatic stem cell behavior and disease modeling. Our observations of ear-derived chondrogenic stem cell behavior have implications for choice of cells for tissue engineered reconstructive purposes and for modeling the etiopathogenesis of microtia

    An incidental diagnosis of SARS-CoV-2 pneumonia with magnetic resonance imaging

    Get PDF
    The Coronavirus disease 2019 (COVID-19) is caused by the human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. The most common clinical findings related to COVID-19 are fever and cough, with the proportion of patients developing interstitial pneumonia. Other symptoms include dyspnea, expectoration, headache, anosmia, ageusia, myalgia and malaise. To date, the diagnostic criteria for COVID-19 include nasopharyngeal and oropharyngeal swabs. Computed tomography (CT) scans of the thorax showing signs of interstitial pneumonia are important in the management of respiratory disease and in the evaluation of lung involvement. hi the literature, there are few cases of COVID-19 pneumonia diagnosis made using magnetic resonance imaging (MRI). In our report, we describe a case of accidental detection of findings related to interstitial pneumonia in a patient who underwent abdominal MRI for other clinical reasons. A 71-year-old woman was referred to our department for an MRI scan of the abdomen as her oncological follow-up. She was asymptomatic at the time of the examination and had passed the triage carried out on all the patients prior to diagnostic tests during the COVID-19 pandemic. The images acquired in the upper abdomen showed the presence of areas of altered signal intensity involving asymmetrically both pulmonary lower lobes, with a patchy appearance and a preferential peripheral subpleural distribution. We considered these features as highly suspicious for COVID-19 pneumonia. The nasopharyngeal swab later confirmed the diagnosis of SARS-CoV-2 infection. There are limited reports about MRI features of COVID-19 pneumonia, considering that high-resolution chest CT is the imaging technique of choice to diagnose pneumonia. Nevertheless, this clinical case confirmed that it is possible to detect MRI signs suggestive of COVID-19 pneumonia. The imaging features described could help in the evaluation of the lung parenchyma to assess the presence of signs suggestive of COVID-19 pneumonia, especially in asymptomatic patients during the pandemic phase of the disease

    Default rules in investment decision-making: trait anxiety and decision-making styles

    Get PDF
    This study investigates the role of default options in the relationship between trait anxiety, and decision-making styles and financial decisions. One hundred and ninety-four participants were divided into three groups and subjected to three different conditions. Under each experimental condition, they had to decide whether to accept or reject investment proposals. In the first group, they had been enrolled in investment plans by default (opt-out condition), in the second group, they had not been automatically enrolled in these plans (opt-in condition), and in the third group they had to choose whether to enroll or not (control condition). The results showed that the investment decisions of anxious, avoidant, rational and dependent individuals could be facilitated by default options. In conclusion, using default options as a “nudge” can support specific groups of people to improve their financial decisions

    Rubbery nanofibers by co-electrospinning of almost immiscible NBR and PCL blends

    Get PDF
    The paper presents a simple method for producing rubbery nanofibers without additional crosslinking required. Electrospinning's fast solvent evaporation is able to induce in liquid NBR/PCL pairs thermoplastic elastomeric (TPE) structure that holds stable over time without any further processing. The slight relative solubility of the polymers pair promotes a homogeneous blend formation with low Tg regions of blended NBR/PCL, avoiding phase separation. Such nanofibers show also a PCL-like crystal phase that is surprisingly higher than plain PCL nanofibrous counterpart and seemingly promoted by NBR/PCL interaction at molecular scale. The obtained nanofibrous-TPE morphology is reproducible, stable with time up to at least two years and is detected in a wide range of blend compositions (up to 80%wt NBR). Such a morphology reflects in good mechanical properties, which are analysed with a fitting model taking into account nanofibrous structure. Its impressive fitting ability helps interpretation of tensile tests behavior, carried out via normalization of force data with respect to sample mass, highlighting the contribution of liquid rubber in improving both elastic modulus and properties at failure. Such rubbery nanofibers represent a cost-effective powerful tool for the production of advanced self-damping composite materials with improved overall mechanical properties

    On the Oligomeric State of DJ-1 Protein and Its Mutants Associated with Parkinson Disease A COMBINED COMPUTATIONAL AND IN VITRO STUDY

    Get PDF
    Mutations in the DJ-1 protein are present in patients suffering from familial Parkinson disease. Here we use computational methods and biological assays to investigate the relationship between DJ-1 missense mutations and the protein oligomeric state. Molecular dynamics calculations suggest that: (i) the structure of DJ-1 wild type (WT) in aqueous solution, in both oxidized and reduced forms, is similar to the crystal structure of the reduced form; (ii) the Parkinson disease-causing M26I variant is structurally similar to the WT, consistent with the experimental evidence showing the protein is a dimer as WT; (iii) R98Q is structurally similar to the WT, consistent with the fact that this is a physiological variant; and (iv) the L166P monomer rapidly evolves toward a conformation significantly different from WT, suggesting a change in its ability to oligomerize. Our combined computational and experimental approach is next used to identify a mutant (R28A) that, in contrast to L166P, destabilizes the dimer subunit-subunit interface without significantly changing secondary structure elements

    A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes

    Get PDF
    The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis

    Tuning the Structure of Nylon 6,6 Electrospun Bundles to Mimic the Mechanical Performance of Tendon Fascicles

    Get PDF
    Tendon and ligament injuries are triggered by mechanical loading, but the specific mechanisms are not yet clearly identified. It is well established however, that the inflection and transition points in tendon stress-strain curves represent thresholds that may signal the onset of irreversible fibrillar sliding. This phenomenon often results in a progressive macroscopic failure of these tissues. With the aim to simulate and replace tendons, electrospinning has been demonstrated to be a suitable technology to produce nanofibers similar to the collagen fibrils in a mat form. These nanofibrous mats can be easily assembled in higher hierarchical levels to reproduce the whole tissue structure. Despite the fact that several groups have developed electrospun tendon-inspired structures, an investigation of the inflection and transition point mechanics is missing. Comparing their behavior with that of the natural counterpart is important to adequately replicate their behavior at physiological strain levels. To fill this gap, in this work fascicle-inspired electrospun nylon 6,6 bundles were produced with different collector peripheral speeds (i.e., 19.7 m s–1; 13.7 m s–1; 7.9 m s–1), obtaining different patterns of nanofibers alignment. The scanning electron microcopy revealed a fibril-inspired structure of the nanofibers with an orientation at the higher speed similar to those in tendons and ligaments (T/L). A tensile mechanical characterization was carried out showing an elastic-brittle biomimetic behavior for the higher speed bundles with a progressively more ductile behavior at slower speeds. Moreover, for each sample category the transition and the inflection points were defined to study how these points can shift with the nanofiber arrangement and to compare their values with those of tendons. The results of this study will be of extreme interest for the material scientists working in the field, to model and improve the design of their electrospun structures and scaffolds and enable building a new generation of artificial tendons and ligaments

    A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes

    Get PDF
    The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis

    A Thermoplastic Elastomeric Nanofibrous Membrane as CFRP Modifier to Boost Both Delamination and Damping Performance

    Get PDF
    In the present work, thermoplastic elastomeric nanofibers made up of a homogenous blend of nitrile butadiene rubber (NBR) and Ppolycaprolactone (CL), with 80% wt of rubbery component, are used to modify a carbon fiber reinforced polymer (CFRP) laminate with the aim of improving its delamination and damping behavior at the same time. Since the nanofibrous membrane is not chemically cross-linked, the fibrous morphology is lost during composite curing owing to its melting. Nonetheless, the nanomodified CFRP displays an impressive ability to improve the delamination resistance in mode I and also an enhanced damping capacity at low temperature. The use of nanofibrous membranes allows for modification of specifically selected areas, thus maximizing the toughening and damping behavior where most required, without necessarily affecting the whole bulk of the resin. Both PCL and NBR components contribute to the final performance; however, the very high amount of rubber leads to a membrane difficult to handle whose final performance in CFRP modification is not superior to membranes up to 60% wt NBR that are instead more stable and easier to deal with. Overall, the proposed results are nonetheless very promising, taking into account also that the improved delamination resistance in mode I and enhanced damping are obtained without significantly sacrificing the weight and overall dimension of the obtained composite
    • …
    corecore