12 research outputs found

    Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2_2Te4_4

    Get PDF
    Modification of the gap at the Dirac point (DP) in antiferromagnetic (AFM) axion topological insulator MnBi2_2Te4_4 and its electronic and spin structure has been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation with variation of temperature (9-35~K), light polarization and photon energy. We have distinguished both a large (62-67~meV) and a reduced (15-18~meV) gap at the DP in the ARPES dispersions, which remains open above the N\'eel temperature (TN=24.5T_\mathrm{N}=24.5~K). We propose that the gap above TNT_\mathrm{N} remains open due to short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for large-gap sample and significantly reduced effective magnetic moment for the reduced-gap sample. These effects can be associated with a shift of the topological DC state towards the second Mn layer due to structural defects and mechanical disturbance, where it is influenced by a compensated effect of opposite magnetic moments

    Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4A

    Get PDF
    Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator MnBi2Te4 and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9-35 K), light polarizations and photon energies. We have distinguished both large (60-70 meV) and reduced (< 20 meV) gaps at the DP in the ARPES dispersions, which remain open above the Neel temperature (T-N = 24.5 K). We propose that the gap above T-N remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the "large gap" sample and apparently significantly reduced effective magnetic moment for the "reduced gap" sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.The authors acknowledge support by the Saint Petersburg State University (Grant No. 51126254), Russian Science Foundation (Grant No. 18-12-00062 in part of the photoemission measurements and Grant No. 18-12-00169 in part of the electronic band structure calculations) and by Russian Foundation of Basic Researches (Grants Nos. 18-52-06009 and 20-32-70179) and Science Development Foundation under the President of the Republic of Azerbaijan (Grant No. EI F-BGM-4-RFTF1/2017-21/04/1-M-02). A. Kimura was financially supported by KAKENHI (Grants No. 17H06138, No. 17H06152, and No. 18H03683). S.V.E. and E.V.C. acknowledge support by the Fundamental Research Program of the State Academies of Sciences (line of research III.23.2.9). The authors kindly acknowledge the HiSOR staff and A. Harasawa at ISSP for technical support and help with the experiment. The ARPES measurements at HiSOR were performed with the approval of the Proposal Assessing Committee (Proposal Numbers: 18BG027 and 19AG048). XAS and XMCD measurements were performed at BL23SU of SPring-8 (Proposal Nos. 2018A3842 and 2018B3842) under the Shared Use Program of JAEA Facilities (Proposal Nos. 2018A-E25 and 2018B-E24) with the approval of Nanotechnology Platform project supported by MEXT, Japan (Proposal Nos. A-18-AE-0020 and A-18-AE-0042). M. M. Otrokov acknowledges the support by Spanish Ministerio de Ciencia e Innovacion (Grant no. PID2019-103910GB-I00). K. Yaji was financially supported by KAKENHI (Grants No. 18K03484)

    Immunomodulatory drugs in the treatment of postpartum endometritis

    No full text
    Puerperium pyoinflammatory diseases (PID) represent the most crucial problem in obstetrics. Among the PID pathologies, the leading place belongs to postpartum endometritis, most commonly occurring after surgical and pathological childbirth. Given the fact that in the pathogenesis of postpartum PID the significant role belongs to changes in the immunological status characterized either by the combined inhibition of T- and B-systems of immunity or, primarily, by damage to T-lymphocytes, the inclusion of immunomodulatory drugs in the complex therapy of postpartum endometritis contributes to a more rapid achievement of clinical effect and allows to obtain favorable outcomes

    Placental apoptosis in pre-eclampsia

    No full text
    The objective was to determine the presence and severity of placental apoptosis in pre-eclampsia. The study included 31 patients. All patients were divided into 2 groups: group I (treatment) included 11 pregnant women with preeclampsia, group II (control) - 20 healthy patients. Gene expression was evaluated with qPCR assay, and placental apoptosis was assessed by the TUNEL method. It was found that the level of placental apoptosis in preeclampsia patients was significantly higher compared to that of apparently healthy females, and in some cases stem villi are destroyed due to programmed cell death in the villous stroma and syncytiotrophoblast. In preeclampsia, oxidative stress leads to increased levels of apoptosis in placental villi. Both trophoblast cells and, in certain cases, cells of the villous stroma are subject to apoptosis

    Lattice dynamics of Bi2Те3 and vibrational modes in Raman scattering of topological insulators MnBi2Te4·n(Bi2Te3)

    Get PDF
    This work is devoted to the experimental study and symmetry analysis of the Raman-active vibration modes in MnBi2Te4 center dot n(Bi2Te3) van der Waals topological insulators, where n is the number of Te-Bi-Te-Bi-Te quintuple layers between two neighboring Te-Bi-Te-Mn-Te-Bi-Te septuple layers. Confocal Raman spectroscopy is applied to study Raman spectra of crystal structures with n = 0,1, 2, 3, 4, 5, 6, and infinity. The experimental frequencies of vibration modes of the same symmetry in the structures with different n are compared. The lattice dynamics of free-standing one, three, and four quintuple layers, as well as of bulk Bi2Te3 (n = infinity) and MnBi2Te4 (n = 0), is considered theoretically. Vibrational modes of the last two systems have the same symmetry, but different displacement fields. These fields in the case of a Raman-active mode do not contain displacements of manganese atoms for any finite n. It is shown that two vibrational modes in the low-frequency region of the spectrum (35-70 cm(-1)) of structures with n = 1, 2, 3, 4, 5, and 6 practically correspond to the lattice dynamics of n free quintuple Bi2Te3 layers. For this reason, the remaining two vibration modes, which are observed in the high-frequency region of the spectrum (100-140 cm(-1)) and are experimentally indistinguishable in the sense of belonging to quintuple or septuple layer or to both layers simultaneously, should also be assigned to vibrations in quintuple layers under immobile atoms of septuple layers

    Prediction and observation of an antiferromagnetic topological insulator

    No full text
    Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator -a stoichiometric well ordered magnetic compound- could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6,7,8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3

    Phase diagrams in materials science of topological insulators based on metal chalcogenides

    No full text
    corecore