300 research outputs found

    Strain control of superlattice implies weak charge-lattice coupling in La0.5_{0.5}Ca0.5_{0.5}MnO3_3

    Full text link
    We have recently argued that manganites do not possess stripes of charge order, implying that the electron-lattice coupling is weak [Phys Rev Lett \textbf{94} (2005) 097202]. Here we independently argue the same conclusion based on transmission electron microscopy measurements of a nanopatterned epitaxial film of La0.5_{0.5}Ca0.5_{0.5}MnO3_3. In strain relaxed regions, the superlattice period is modified by 2-3% with respect to the parent lattice, suggesting that the two are not strongly tied.Comment: 4 pages, 4 figures It is now explained why the work provides evidence to support weak-coupling, and rule out charge orde

    Volume contraction at the Jahn-Teller transition of LaMnO3_3

    Full text link
    We have studied the volume collapse of LaMnO3_3 at the Jahn- Teller (JT) transition temperature TJT_{JT}=750 K which has recently been found in high temperature powder x- ray and neutron diffraction experiments. We construct a model Hamiltonian involving the pseudospin of Mn3+^{3+} eg_g states, the staggered JT distortion and the volume strain coordinate. We show that the anharmonic coupling between these primary and secondary order parameters leads to the first order JT phase transition associated with a comparatively large reduction of the unit cell volume of Δ\DeltaV/V≃\simeq 10−2^{-2}. We explain the temperature dependence of JT distortions and volume strain and discuss the volume change as function of the anharmonic coupling constant. A continuous change to a second order transition as function of model parameters is obtained. This behaviour is also observed under Ba doping.Comment: 5 pages, 4 figure

    Cooperative Jahn-Teller Effect and Electron-Phonon Coupling in La1−xAxMnO3La_{1-x}A_xMnO_3

    Full text link
    A classical model for the lattice distortions of \lax is derived and, in a mean field approximation, solved. The model is based on previous work by Kanamori and involves localized Mn d-electrons (which induce tetragonal distortions of the oxygen octahedra surrounding the Mn) and localized holes (which induce breathing distortions). Parameters are determined by fitting to the room temperature structure of LaMnO3LaMnO_3. The energy gained by formation of a local lattice distortion is found to be large, most likely ≈0.6\approx 0.6 eV per site, implying a strong electorn-phonon coupling and supporting polaronic models of transport in the doped materials. The structural transition is shown to be of the order-disorder type; the rapid x-dependence of the transition temperature is argued to occur because added holes produce a "random" field which misaligns the nearby sites.Comment: 24 pages. No figures. One Table. Late

    Structural and magnetic properties of Mn3-xCdxTeO6 (x = 0, 1, 1.5 and 2)

    Full text link
    Mn3TeO6 exhibits a corundum-related A3TeO6 structure and a complex magnetic structure involving two magnetic orbits for the Mn atoms [*]. Mn3-xCdxTeO6 (x=0, 1, 1.5 and 2) ceramics were synthesized by solid state reaction and investigated using X-ray powder diffraction, electron microscopy, calorimetric and magnetic measurements. Cd2+ replaces Mn2+ cations without greatly affecting the structure of the compound. The Mn and Cd cations were found to be randomly distributed over the A-site. Magnetization measurements indicated that the samples order antiferromagnetically at low temperature with a transition temperature that decreases with increasing Cd doping. The nuclear and magnetic structure of one specially prepared 114Cd containing sample: Mn1.5(114Cd)1.5TeO6, was studied using neutron powder diffraction over the temperature range 2 to 295 K. Mn1.5(114Cd)1.5TeO6 was found to order in an incommensurate helical magnetic structure, very similar to that of Mn3TeO6 [*]. However, with a lower transition temperature and the extension of the ordered structure confined to order 240(10) {\AA}. [*] S. A. Ivanov et al. Mater. Res. Bull. 46 (2011) 1870.Comment: 20 pages, 8 figure

    Interplay of the CE-type charge ordering and the A-type spin ordering in a half-doped bilayer manganite La{1}Sr{2}Mn{2}O{7}

    Full text link
    We demonstrate that the half-doped bilayer manganite La_{1}Sr_{2}Mn_{2}O_{7} exhibits CE-type charge-ordered and spin-ordered states below TN,COA=210T_{N, CO}^A = 210 K and below TNCE∼145T_{N}^{CE} \sim 145 K, respectively. However, the volume fraction of the CE-type ordering is relatively small, and the system is dominated by the A-type spin ordering. The coexistence of the two types of ordering is essential to understand its transport properties, and we argue that it can be viewed as an effective phase separation between the metallic d(x2−y2)d(x^{2}-y^{2}) orbital ordering and the charge-localized d(3x2−r2)/d(3y2−r2)d(3x^{2}-r^{2})/d(3y^{2}-r^{2}) orbital ordering.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Spin Excitation Spectrum of La1−xAx_{1-x}A_xMnO3_3

    Full text link
    As an effective model to describe perovskite-type manganates (La,AA)MnO3_3, the double-exchange model on a cubic lattice is investigated. Spin excitation spectrum of the model in the ground state is studied using the spin wave approximation. Spin wave dispersion relation observed in the inelastic neutron scattering experiment of La0.7_{0.7}Pb0.3_{0.3}MnO3_3 is reproduced. Effective values for the electron bandwidth as well as Hund's coupling is estimated from the data.Comment: 10 pages LaTeX including 4 PS figure
    • …
    corecore