298 research outputs found

    Linear Chains of Styrene and Methyl-Styrene Molecules and their Heterojunctions on Silicon: Theory and Experiment

    Full text link
    We report on the synthesis, STM imaging and theoretical studies of the structure, electronic structure and transport properties of linear chains of styrene and methyl-styrene molecules and their heterojunctions on hydrogen-terminated dimerized silicon (001) surfaces. The theory presented here accounts for the essential features of the experimental STM data including the nature of the corrugation observed along the molecular chains and the pronounced changes in the contrast between the styrene and methyl-styrene parts of the molecular chains that are observed as the applied bias is varied. The observed evolution with applied bias of the STM profiles near the ends of the molecular chains is also explained. Calculations are also presented of electron transport along styrene linear chains adsorbed on the silicon surface at energies in the vicinity of the molecular HOMO and LUMO levels. For short styrene chains this lateral transport is found to be due primarily to direct electron transmission from molecule to molecule rather than through the silicon substrate, especially in the molecular LUMO band. Differences between the calculated position-dependences of the STM current around a junction of styrene and methyl-styrene molecular chains under positive and negative tip bias are related to the nature of lateral electron transmission along the molecular chains and to the formation in the LUMO band of an electronic state localized around the heterojunction.Comment: 17 pages plus 11 figures. To appear in Physical Review

    The fission yeast DNA structure checkpoint protein Rad26(ATRIP/LCD1/UVSD )accumulates in the cytoplasm following microtubule destabilization

    Get PDF
    BACKGROUND: DNA structure checkpoints are conserved eukaryotic signal transduction pathways that help preserve genomic integrity. Upon detecting checkpoint signals such as stalled replication forks or double-stranded DNA breaks, these pathways coordinate appropriate stress responses. Members of the PI-3 kinase related kinase (PIKK) family are essential elements of DNA structure checkpoints. In fission yeast, the Rad3 PIKK and its regulatory subunit Rad26 coordinate the detection of checkpoint signals with pathway outputs. RESULTS: We found that untreated rad26Δ cells were defective for two microtubule-dependent processes: chromosome segregation and morphogenesis. Interestingly, cytoplasmic accumulation of Rad26-GFP occurred following treatment with microtubule destabilizing drugs, but not during treatment with the genotoxic agent Phleomycin. Cytoplasmic accumulation of Rad26-GFP depended on Rad24, a 14-3-3 protein also required for DNA structure checkpoints and morphogenesis. Results of over expression and epistasis experiments confirm that Rad26 and Rad24 define a response to microtubule destabilizing conditions. CONCLUSION: Two DNA structure checkpoint proteins with roles in morphogenesis define a response to microtubule destabilizing conditions

    First-Principles Studies of Hydrogenated Si(111)--7Ă—\times7

    Full text link
    The relaxed geometries and electronic properties of the hydrogenated phases of the Si(111)-7Ă—\times7 surface are studied using first-principles molecular dynamics. A monohydride phase, with one H per dangling bond adsorbed on the bare surface is found to be energetically favorable. Another phase where 43 hydrogens saturate the dangling bonds created by the removal of the adatoms from the clean surface is found to be nearly equivalent energetically. Experimental STM and differential reflectance characteristics of the hydrogenated surfaces agree well with the calculated features.Comment: REVTEX manuscript with 3 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm

    Back-Reaction In Lightcone QED

    Get PDF
    We consider the back-reaction of quantum electrodynamics upon an electric field E(x_+) = - A'_-(x_+) which is parallel to x^3 and depends only on the lightcone coordinate x_+ = (x^0 + x^3)/\sqrt{2}. Novel features are that the mode functions have simple expressions for arbitrary A_-(x_+), and that one cannot ignore the usual lightcone ambiguity at zero + momentum. Each mode of definite canonical momenta k_+ experiences pair creation at the instant when its kinetic momentum p_+=k_+ - e A_-(x_+) vanishes, at which point operators from the surface at x_- =-\infty play a crucial role. Our formalism permits a more explicit and complete derivation of the rate of particle production than is usually given. We show that the system can be understood as the infinite boost limit of the analogous problem of an electric field which is homogeneous on surfaces of constant x^0.Comment: 37 pages, 2 figures, LaTeX 2 epsilo

    Silicon-based molecular electronics

    Full text link
    Molecular electronics on silicon has distinct advantages over its metallic counterpart. We describe a theoretical formalism for transport through semiconductor-molecule heterostructures, combining a semi-empirical treatment of the bulk silicon bandstructure with a first-principles description of the molecular chemistry and its bonding with silicon. Using this method, we demonstrate that the presence of a semiconducting band-edge can lead to a novel molecular resonant tunneling diode (RTD) that shows negative differential resistance (NDR) when the molecular levels are driven by an STM potential into the semiconducting band-gap. The peaks appear for positive bias on a p-doped and negative for an n-doped substrate. Charging in these devices is compromised by the RTD action, allowing possible identification of several molecular highest occupied (HOMO) and lowest unoccupied (LUMO) levels. Recent experiments by Hersam et al. [1] support our theoretical predictions.Comment: Author list is reverse alphabetical. All authors contributed equally. Email: rakshit/liangg/ ghosha/[email protected]

    The role of electronic correlation in the Si(100) reconstruction: a quantum Monte Carlo study

    Get PDF
    Recent low-temperature scanning tunneling experiments have challenged the generally accepted picture of buckled silicon dimers as the ground state reconstruction of the Si(100) surface. Together with the symmetric dimer model of the surface suggested by quantum chemistry calculations on small clusters, these findings question our general understanding of electronic correlations at surfaces and its proper description within density functional theory. We present quantum Monte Carlo calculations on large cluster models of the symmetric and buckled surface, and conclude that buckling remains energetically more favorable even when the present-day best treatment of electronic correlation is employed.Comment: 5 pages, Revtex, 10 figure

    The impact of sleep restriction and simulated physical firefighting work on acute inflammatory stress responses

    Get PDF
    OBJECTIVES: This study investigated the effect restricted sleep has on wildland firefighters\u27 acute cytokine levels during 3 days and 2 nights of simulated physical wildfire suppression work. METHODS: Firefighters completed multiple days of physical firefighting work separated by either an 8-h (Control condition; n = 18) or 4-h (Sleep restriction condition; n = 17) sleep opportunity each night. Blood samples were collected 4 times a day (i.e., 06:15, 11:30, 18:15, 21:30) from which plasma cytokine levels (IL-6, IL-8, IL-1β, TNF-α, IL-4, IL-10) were measured. RESULTS: The primary findings for cytokine levels revealed a fixed effect for condition that showed higher IL-8 levels among firefighters who received an 8-h sleep each night. An interaction effect demonstrated differing increases in IL-6 over successive days of work for the SR and CON conditions. Fixed effects for time indicated that IL-6 and IL-4 levels increased, while IL-1β, TNF-α and IL-8 levels decreased. There were no significant effects for IL-10 observed. CONCLUSION: Findings demonstrate increased IL-8 levels among firefighters who received an 8-h sleep when compared to those who had a restricted 4-h sleep. Firefighters\u27 IL-6 levels increased in both conditions which may indicate that a 4-h sleep restriction duration and/or period (i.e., 2 nights) was not a significant enough stressor to affect this cytokine. Considering the immunomodulatory properties of IL-6 and IL-4 that inhibit pro-inflammatory cytokines, the rise in IL-6 and IL-4, independent of increases in IL-1β and TNF-α, could indicate a non-damaging response to the stress of simulated physical firefighting work. However, given the link between chronically elevated cytokine levels and several diseases, further research is needed to determine if firefighters\u27 IL-8 and IL-6 levels are elevated following repeated firefighting deployments across a fire season and over multiple fire seasons

    Density-functional study of hydrogen chemisorption on vicinal Si(001) surfaces

    Full text link
    Relaxed atomic geometries and chemisorption energies have been calculated for the dissociative adsorption of molecular hydrogen on vicinal Si(001) surfaces. We employ density-functional theory, together with a pseudopotential for Si, and apply the generalized gradient approximation by Perdew and Wang to the exchange-correlation functional. We find the double-atomic-height rebonded D_B step, which is known to be stable on the clean surface, to remain stable on partially hydrogen-covered surfaces. The H atoms preferentially bind to the Si atoms at the rebonded step edge, with a chemisorption energy difference with respect to the terrace sites of >sim 0.1 eV. A surface with rebonded single atomic height S_A and S_B steps gives very similar results. The interaction between H-Si-Si-H mono-hydride units is shown to be unimportant for the calculation of the step-edge hydrogen-occupation. Our results confirm the interpretation and results of the recent H_2 adsorption experiments on vicinal Si surfaces by Raschke and Hoefer described in the preceding paper.Comment: 13 pages, 8 figures, submitted to Phys. Rev. B. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Sleep in wildland firefighters: what do we know and why does it matter?

    Full text link
    Wildland firefighters perform physical work while being subjected to multiple stressors and adverse, volatile working environments for extended periods. Recent research has highlighted sleep as a significant and potentially modifiable factor impacting operational performance. The aim of this review was to (1) examine the existing literature on firefighters’ sleep quantity and quality during wildland firefighting operations; (2) synthesise the operational and environmental factors that impact on sleep during wildland firefighting; and (3) assess how sleep impacts aspects of firefighters’ health and safety, including mental and physical health, physical task performance, physical activity and cognitive performance. Firefighters’ sleep is restricted during wildfire deployments, particularly when shifts have early start times, are of long duration and when sleeping in temporary accommodation. Shortened sleep impairs cognitive but not physical performance under simulated wildfire conditions. The longer-term impacts of sleep restriction on physiological and mental health require further research. Work shifts should be structured, wherever possible, to provide regular and sufficient recovery opportunities (rest during and sleep between shifts), especially in dangerous working environments where fatigue-related errors have severe consequences. Fire agencies should implement strategies to improve and manage firefighters’ sleep and reduce any adverse impacts on firefighters’ work

    Split-off dimer defects on the Si(001)2x1 surface

    Full text link
    Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were investigated using high-resolution scanning tunneling microscopy and first principles calculations. We find that under low bias filled-state tunneling conditions, isolated 'split-off' dimers in these defect complexes are imaged as pairs of protrusions while the surrounding Si surface dimers appear as the usual 'bean-shaped' protrusions. We attribute this to the formation of pi-bonds between the two atoms of the split-off dimer and second layer atoms, and present charge density plots to support this assignment. We observe a local brightness enhancement due to strain for different DV complexes and provide the first experimental confirmation of an earlier prediction that the 1+2-DV induces less surface strain than other DV complexes. Finally, we present a previously unreported triangular shaped split-off dimer defect complex that exists at SB-type step edges, and propose a structure for this defect involving a bound Si monomer.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
    • …
    corecore