3,330 research outputs found

    A dynamical symmetry for supermembranes

    Full text link
    A dynamical symmetry for supersymmetric extended objects is given.Comment: 3 page

    Primary cosmic ray particles with z 35 (VVH particles)

    Get PDF
    Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high altitude balloon flights. From the analysis of 141 particle tracks recorded during a total exposure of 1.3 x 10 to the 7th power sq m ster.sec., a charge spectrum of the VVH particles has been derived

    Nonabelian D-branes and Noncommutative Geometry

    Full text link
    We discuss the nonabelian world-volume action which governs the dynamics of N coincident Dp-branes. In this theory, the branes' transverse displacements are described by matrix-valued scalar fields, and so this is a natural physical framework for the appearance of noncommutative geometry. One example is the dielectric effect by which Dp-branes may be polarized into a noncommutative geometry by external fields. Another example is the appearance of noncommutative geometries in the description of intersecting D-branes of differing dimensions, such as D-strings ending on a D3- or D5-brane. We also describe the related physics of giant gravitons.Comment: 21 pages, Latex, ref. adde

    Supertubes

    Get PDF
    It is shown that a IIA superstring carrying D0-brane charge can be `blown-up', in a {\it Minkowski vacuum} background, to a (1/4)-supersymmetric tubular D2-brane, supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld fields. This `supertube' can be viewed as a worldvolume realization of the sigma-model Q-lump.Comment: Revision includes mention of some configurations dual to the supertub

    Dust in the Local Interstellar Wind

    Get PDF
    The gas-to-dust mass ratios found for interstellar dust within the Solar System, versus values determined astronomically for the cloud around the Solar System, suggest that large and small interstellar grains have separate histories, and that large interstellar grains preferentially detected by spacecraft are not formed exclusively by mass exchange with nearby interstellar gas. Observations by the Ulysses and Galileo satellites of the mass spectrum and flux rate of interstellar dust within the heliosphere are combined with information about the density, composition, and relative flow speed and direction of interstellar gas in the cloud surrounding the solar system to derive an in situ value for the gas-to-dust mass ratio, Rg/d=9438+46R_{g/d} = 94^{+46}_{-38}. Hubble observations of the cloud surrounding the solar system yield a gas-to-dust mass ratio of Rg/d=551+61-251 when B-star reference abundances are assumed. The exclusion of small dust grains from the heliosheath and heliosphere regions are modeled, increasing the discrepancy between interstellar and in situ observations. The shock destruction of interstellar grains is considered, and comparisons are made with interplanetary and presolar dust grains.Comment: 87 pages, 9 figures, 6 tables, accepted for publication in Astrophysical Journal. Uses AASTe
    corecore