190 research outputs found
Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment
The Antarctic Impulsive Transient Antenna (ANITA) completed its second
long-duration balloon flight in January 2009, with 31 days aloft (28.5 live
days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov
emission from 200 to 1200 MHz, arising from the Askaryan charge excess in
ultra-high energy neutrino-induced cascades within Antarctic ice. This flight
included significant improvements over the first flight in the payload
sensitivity, efficiency, and a flight trajectory over deeper ice. Analysis of
in-flight calibration pulses from surface and sub-surface locations verifies
the expected sensitivity. In a blind analysis, we find 2 surviving events on a
background, mostly anthropogenic, of 0.97+-0.42 events. We set the strongest
limit to date for 1-1000 EeV cosmic neutrinos, excluding several current
cosmogenic neutrino models.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
Ultra-Relativistic Magnetic Monopole Search with the ANITA-II Balloon-borne Radio Interferometer
We have conducted a search for extended energy deposition trails left by
ultra-relativistic magnetic monopoles interacting in Antarctic ice. The
non-observation of any satisfactory candidates in the 31 days of accumulated
ANITA-II flight data results in an upper limit on the diffuse flux of
relativistic monopoles. We obtain a 90% C.L. limit of order
10^{-19}/(cm^2-s-sr) for values of Lorentz boost factor 10^{10}<gamma at the
anticipated energy E=10^{16} GeV. This bound is stronger than all previously
published experimental limits for this kinematic range.Comment: updated to version accepted by Phys. Rev.
Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne Radio Interferometer
We report the observation of sixteen cosmic ray events of mean energy of 1.5
x 10^{19} eV, via radio pulses originating from the interaction of the cosmic
ray air shower with the Antarctic geomagnetic field, a process known as
geosynchrotron emission. We present the first ultra-wideband, far-field
measurements of the radio spectral density of geosynchrotron emission in the
range from 300-1000 MHz. The emission is 100% linearly polarized in the plane
perpendicular to the projected geomagnetic field. Fourteen of our observed
events are seen to have a phase-inversion due to reflection of the radio beam
off the ice surface, and two additional events are seen directly from above the
horizon.Comment: 5 pages, 5 figures, new figure adde
Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole
We report on studies of the viability and sensitivity of the Askaryan Radio
Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy
neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at
the South Pole. An initial prototype ARA detector system was installed in
January 2011, and has been operating continuously since then. We report on
studies of the background radio noise levels, the radio clarity of the ice, and
the estimated sensitivity of the planned ARA array given these results, based
on the first five months of operation. Anthropogenic radio interference in the
vicinity of the South Pole currently leads to a few-percent loss of data, but
no overall effect on the background noise levels, which are dominated by the
thermal noise floor of the cold polar ice, and galactic noise at lower
frequencies. We have also successfully detected signals originating from a 2.5
km deep impulse generator at a distance of over 3 km from our prototype
detector, confirming prior estimates of kilometer-scale attenuation lengths for
cold polar ice. These are also the first such measurements for propagation over
such large slant distances in ice. Based on these data, ARA-37, the 200 km^2
array now under construction, will achieve the highest sensitivity of any
planned or existing neutrino detector in the 10^{16}-10^{19} eV energy range.Comment: 25 pages, 37 figures, this version with improved ice attenuation
length analysis; for submission to Astroparticle Physic
Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam
The velocity of a ~3 GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.12.910-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mnu<50 MeV/c2 (99% C.L.)
A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam
We report the results of a search for muon-neutrino disappearance by the Main
Injector Neutrino Oscillation Search. The experiment uses two detectors
separated by 734 km to observe a beam of neutrinos created by the Neutrinos at
the Main Injector facility at Fermi National Accelerator Laboratory. The data
were collected in the first 282 days of beam operations and correspond to an
exposure of 1.27e20 protons on target. Based on measurements in the Near
Detector, in the absence of neutrino oscillations we expected 336 +/- 14
muon-neutrino charged-current interactions at the Far Detector but observed
215. This deficit of events corresponds to a significance of 5.2 standard
deviations. The deficit is energy dependent and is consistent with two-flavor
neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3
eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.Comment: In submission to Phys. Rev.
Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector
A search for a sidereal modulation in the MINOS near detector neutrino data
was performed. If present, this signature could be a consequence of Lorentz and
CPT violation as predicted by a class of extensions to the Standard Model. No
evidence for a sidereal signal in the data set was found, implying that there
is no significant change in neutrino propagation that depends on the direction
of the neutrino beam in a sun-centered inertial frame. Upper limits on the
magnitudes of the Lorentz and CPT violating terms in these extensions to the
Standard Model lie between 0.01-1% of the maximum expected, assuming a
suppression of these signatures by factor of .
- …