357 research outputs found
Is There a Counterpoint to Culture?
Also CSST Working Paper #101.http://deepblue.lib.umich.edu/bitstream/2027.42/51275/1/510.pd
An Orientation Program for Vertical Transfers in Engineering and Engineering Technology
This paper reports on a scholarship program funded by the National Science Foundation that focuses on students who transfer at the 3rd -year level from 2-year schools to the engineering and engineering technology BS programs at our university. The objectives of the program are to: (i) expand and diversify the engineering/technology workforce of the future, (ii) develop linkages and articulations with 2-year schools and their S-STEM (Scholarships in Science, Technology, Engineering and Mathematics) programs, (iii) provide increased career opportunities and job placement rates through mandatory paid co-op experiences, and (iv) serve as a model for other universities to provide vertical transfer students access to the baccalaureate degree. The program is in its third year. It recruited its first group of 25 students in Fall 2017, and another group of 27 students in Fall 2018. We hope to recruit 26 more students in Fall 2019 for a total of 78 vertical transfers. The goal is to retain and graduate at least 95% of these scholars. To enhance the success of these scholars, a zero-credit six-week orientation course was developed in Fall 2017 focusing on four dimensions of student wellness: academic, financial, social, and personal. This paper describes the development of this course, its content, and the modifications that were made to the course for Fall 2018. The paper will also address the research conducted in order to generate knowledge about the program elements that will be essential for the success of vertical transfer programs at other universities. Two research instruments are described: an online survey and a focus group interview that were developed, and administered to the transfer scholars in their first year. Initial findings concerning students’ experiences at their 2-year schools, their reason for transferring, their experience in transferring as well as their initial conceptions of what life at a 4-year institution will be like are presented
Portable Unit for Metabolic Analysis
The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized, preprocessed by a small onboard computer, and then sent wirelessly to a desktop computer, where the collected data are analyzed and displayed. In addition to the raw data on temperature, pressure, flow, and mole fractions of oxygen and carbon dioxide, the display can include volumetric oxygen consumption, volumetric carbon dioxide production, respiratory equivalent ratio, and volumetric flow rate of exhaled gas
Portable Unit for Metabolic Analysis
The Portable Unit for Metabolic Analysis measures human metabolic function. The compact invention attaches to the face of a subject and it is able to record highly time-resolved measurements of air temperature and pressure, flow rates during inhalation and exhalation, and oxygen and carbon dioxide partial pressure. The device is capable of `breath-by-breath` analysis and `within-breath` analysis at high temporal resolution
Slow magnetic relaxation in Fe(ii) m-terphenyl complexes
Two-coordinate transition metal complexes are exciting candidates for single-molecule magnets (SMMs) because their highly axial coordination environments lead to sizeable magnetic anisotropy. We report a series of five structurally related two-coordinate Fe(II) m-terphenyl complexes (4-R-2,6-Xyl2C6H2)2Fe [R = tBu (1), SiMe3 (2), H (3), Cl (4), CF3 (5)] where, by changing the functionalisation of the para-substituent (R), we alter their magnetic function. All five complexes are field-induced single-molecule magnets, with relaxation rates that are well-described by a combination of direct and Raman mechanisms. By using more electron donating R groups we were able to slow the rate of magnetic relaxation. Our ab initio calculations predict a large crystal field splitting (>850 cm−1) and sizeable zero-field splitting parameters (ca. −60 cm−1, |E| < 0.2 cm−1) for 1–5. These favourable magnetic properties suggest that m-terphenyl ligands have untapped potential as chemically versatile ligands able to impose highly axial crystal fields
EQIP\u27s First Year: A Step Closer to Higher Quality in Surgical Education.
OBJECTIVE: To describe the first year of the Educational Quality Improvement Program (EQIP) DESIGN: The Educational Quality Improvement Program (EQIP) was formed by the Association of Program Directors in Surgery (APDS) in 2018 as a continuous educational quality improvement program. Over 18 months, thirteen discrete goals for the establishment of EQIP were refined and executed through a collaborative effort involving leaders in surgical education. Alpha and beta pilots were conducted to refine the data queries and collection processes. A highly-secure, doubly-deidentified database was created for the ingestion of resident and program data.
SETTING & PARTICIPANTS: 36 surgical training programs with 1264 trainees and 1500 faculty members were included in the dataset. 51,516 ERAS applications to programs were also included. Uni- and multi-variable analysis was then conducted.
RESULTS: EQIP was successfully deployed within the timeline described in 2020. Data from the ACGME, ABS, and ERAS were merged with manually entered data by programs and successfully ingested into the EQIP database. Interactive dashboards have been constructed for use by programs to compare to the national cohort. Risk-adjusted multivariable analysis suggests that increased time in a technical skills lab was associated with increased success on the ABS\u27s Qualifying Examination, alone. Increased time in a technical skills lab and the presence of a formal teaching curriculum were associated with increased success on both the ABS\u27s Qualifying and Certifying Examination. Program type may be of some consequence in predicting success on the Qualifying Examination.
CONCLUSIONS: The APDS has proved the concept that a highly secure database for the purpose of continuous risk-adjusted quality improvement in surgical education can be successfully deployed. EQIP will continue to improve and hopes to include an increasing number of programs as the barriers to participation are overcome
BOWIE-ALIGN: A JWST comparative survey of aligned versus misaligned hot Jupiters to test the dependence of atmospheric composition on migration history
A primary objective of exoplanet atmosphere characterization is to learn about planet formation and evolution, however, this is challenged by degeneracies. To determine whether differences in atmospheric composition can be reliably traced to differences in evolution, we are undertaking a transmission spectroscopy survey with JWST to compare the compositions of a sample of hot Jupiters that have different orbital alignments around F stars above the Kraft break. Under the assumption that aligned planets migrate through the inner disc, while misaligned planets migrate after disc dispersal, the act of migrating through the inner disc should cause a measurable difference in the C/O between aligned and misaligned planets. We expect the amplitude and sign of this difference to depend on the amount of planetesimal accretion and whether silicates accreted from the inner disc release their oxygen. Here, we identify all known exoplanets that are suitable for testing this hypothesis, describe our JWST survey, and use noise simulations and atmospheric retrievals to estimate our survey’s sensitivity. With the selected sample of four aligned and four misaligned hot Jupiters, we will be sensitive to the predicted differences in C/O between aligned and misaligned hot Jupiters for a wide range of model scenarios
Left gaze bias in humans, rhesus monkeys and domestic dogs
While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance
- …