235 research outputs found

    Multi-frequency Studies of Massive Cores with Complex Spatial and Kinematic Structures

    Get PDF
    Five regions of massive star formation have been observed in various molecular lines in the frequency range 8589\sim 85-89 GHz. The studied regions possess dense cores, which host young stellar objects. The physical parameters of the cores are estimated, including kinetic temperatures (2040\sim 20-40 K), sizes of the emitting regions (0.10.6\sim 0.1-0.6 pc), and virial masses (40500M\sim 40-500 M_{\odot}). Column densities and abundances of various molecules are calculated in the local thermodynamical equilibrium approximation. The core in 99.982+4.17, associated with the weakest IRAS source, is characterized by reduced molecular abundances. Molecular line widths decrease with increasing distance from the core centers (bb). For b\ga 0.1~pc, the dependences ΔV(b)\Delta V(b) are close to power laws (bp\propto b^{-p}), where pp varies from 0.2\sim 0.2 to 0.5\sim 0.5, depending on the object. In four cores, the asymmetries of the optically thick HCN(1--0) and HCO+^+(1--0) lines indicate systematic motions along the line of sight: collapse in two cores and expansion in two others. Approximate estimates of the accretion rates in the collapsing cores indicate that the forming stars have masses exceeding the solar mass.Comment: 18 pages, 7 figures, 6 table

    Sodium-23 Magnetic Resonance Imaging

    Get PDF
    23Na MRI provides additional biochemical information to 1H MRI in terms of cell integrity and tissue viability. We aimed at determining the sensitivity of 23Na MRS, MRI and MR relaxometry methods available on 7T MR scanner Bruker Biospec 70/30 USR and developing of an optimal MRI protocol for small animal 23Na in vivo visualization. The outcomes include 23Na MR spectra, 23Na MR images with SNRs, and T1 and T2 values of 23Na. It is shown that single-pulse 23Na MR spectroscopy can discriminate different 23Na concentrations, and 3D FLASH pulse sequence adapted for 23Na data acquisition may provide the acceptable quality images. Keywords: Sodium MRI, Sodium MRS, 3D FLASH, MR relaxometr

    SURFACE INDUCED FINITE-SIZE EFFECTS FOR FIRST ORDER PHASE TRANSITIONS

    Full text link
    We consider classical lattice models describing first-order phase transitions, and study the finite-size scaling of the magnetization and susceptibility. In order to model the effects of an actual surface in systems like small magnetic clusters, we consider models with free boundary conditions. For a field driven transition with two coexisting phases at the infinite volume transition point h=hth=h_t, we prove that the low temperature finite volume magnetization m_{\free}(L,h) per site in a cubic volume of size LdL^d behaves like m_\free(L,h)=\frac{m_++m_-}2 + \frac{m_+-m_-}2 \tanh \bigl(\frac{m_+-m_-}2\,L^d\, (h-h_\chi(L))\bigr)+O(1/L), where hχ(L)h_\chi(L) is the position of the maximum of the (finite volume) susceptibility and m±m_\pm are the infinite volume magnetizations at h=ht+0h=h_t+0 and h=ht0h=h_t-0, respectively. We show that hχ(L)h_\chi(L) is shifted by an amount proportional to 1/L1/L with respect to the infinite volume transitions point hth_t provided the surface free energies of the two phases at the transition point are different. This should be compared with the shift for periodic boun\- dary conditons, which for an asymmetric transition with two coexisting phases is proportional only to 1/L2d1/L^{2d}. One also consider the position hU(L)h_U(L) of the maximum of the so called Binder cummulant U_\free(L,h). While it is again shifted by an amount proportional to 1/L1/L with respect to the infinite volume transition point hth_t, its shift with respect to hχ(L)h_\chi(L) is of the much smaller order 1/L2d1/L^{2d}. We give explicit formulas for the proportionality factors, and show that, in the leading 1/L2d1/L^{2d} term, the relative shift is the same as that for periodic boundary conditions.Comment: 65 pages, amstex, 1 PostScript figur

    Rigorous Analysis of Singularities and Absence of Analytic Continuation at First Order Phase Transition Points in Lattice Spin Models

    Get PDF
    We report about two new rigorous results on the non-analytic properties of thermodynamic potentials at first order phase transition. The first one is valid for lattice models (d2d\geq 2) with arbitrary finite state space, and finite-range interactions which have two ground states. Under the only assumption that the Peierls Condition is satisfied for the ground states and that the temperature is sufficiently low, we prove that the pressure has no analytic continuation at the first order phase transition point. The second result concerns Ising spins with Kac potentials Jγ(x)=γdϕ(γx)J_\gamma(x)=\gamma^d\phi(\gamma x), where 0<γ<10<\gamma<1 is a small scaling parameter, and ϕ\phi a fixed finite range potential. In this framework, we relate the non-analytic behaviour of the pressure at the transition point to the range of interaction, which equals γ1\gamma^{-1}. Our analysis exhibits a crossover between the non-analytic behaviour of finite range models (γ>0\gamma>0) and analyticity in the mean field limit (γ0\gamma\searrow 0). In general, the basic mechanism responsible for the appearance of a singularity blocking the analytic continuation is that arbitrarily large droplets of the other phase become stable at the transition point.Comment: 4 pages, 2 figure

    Magnetism of ordered and disordered alloys of R2Fe14B (R = Nd, Er) type

    Full text link
    Magnetic susceptibility, magnetization and neutron diffraction measurements have been performed to study structure and magnetic states of crystalline and amorphous Nd2Fe14B and Er2Fe14B alloys. In the crystalline state there exists a large (about 20%) anisotropy of Er-sublattice magnetization. Values of the magnetic anisotropy constant of Er ions and the Er-Fe exchange-coupling parameter were estimated using temperature dependence of the Er-and Fe-sublattice magnetizations. Amorphous state of the samples was obtained by irradiation of fast (Eeff≥1MeV) neutrons with a fluence up to the 1.2 Ч 1020 n/cm-2 at 340 K. It is shown that antiferromagnetic coupling between the rare-earth and iron spins is kept in the amorphous state. Amorphization of the samples is found to result in reduction of the Curie temperature (TC) by about 200 K and almost total absence of coercivity. We suggest that the strong decrease of TC is a consequence of enhancement of negative Fe-Fe interactions as a result of dispersion of interatomic distances, which is a characteristic feature of the amorphous state. © 2013 Elsevier B.V. All rights reserved

    Critical droplets in Metastable States of Probabilistic Cellular Automata

    Full text link
    We consider the problem of metastability in a probabilistic cellular automaton (PCA) with a parallel updating rule which is reversible with respect to a Gibbs measure. The dynamical rules contain two parameters β\beta and hh which resemble, but are not identical to, the inverse temperature and external magnetic field in a ferromagnetic Ising model; in particular, the phase diagram of the system has two stable phases when β\beta is large enough and hh is zero, and a unique phase when hh is nonzero. When the system evolves, at small positive values of hh, from an initial state with all spins down, the PCA dynamics give rise to a transition from a metastable to a stable phase when a droplet of the favored ++ phase inside the metastable - phase reaches a critical size. We give heuristic arguments to estimate the critical size in the limit of zero ``temperature'' (β\beta\to\infty), as well as estimates of the time required for the formation of such a droplet in a finite system. Monte Carlo simulations give results in good agreement with the theoretical predictions.Comment: 5 LaTeX picture

    Density Profiles in Molecular Cloud Cores Associated with High-Mass Star-Forming Regions

    Full text link
    Radial density profiles for the sample of dense cores associated with high-mass star-forming regions from southern hemisphere have been derived using the data of observations in continuum at 250 GHz. Radial density profiles for the inner regions of 16 cores (at distances \la 0.2-0.8 pc from the center) are close on average to the ρrα\rho\propto r^{-\alpha} dependence, where α=1.6±0.3\alpha=1.6\pm 0.3. In the outer regions density drops steeper. An analysis with various hydrostatic models showed that the modified Bonnor-Ebert model, which describes turbulent sphere confined by external pressure, is preferable compared with the logotrope and polytrope models practically in all cases. With a help of the Bonnor-Ebert model, estimates of central density in a core, non-thermal velocity dispersion and core size are obtained. The comparison of central densities with the densities derived earlier from the CS modeling reveals differences in several cases. The reasons of such differences are probably connected with the presence of density inhomogenities on the scales smaller than the telescope beam. In most cases non-thermal velocity dispersions are in agreement with the values obtained from molecular line observations.Comment: 12 pages, 3 figures, 4 table

    THE EFFECT OF Tb AND Mn ON THE INTERCHANGE INTERACTION FOR La0.2Tb0.8Mn2Si2 AND La0.4Tb0.6Mn2Si2

    Full text link
    Based on magnetic phase diagram of the La1-xTbxMn2Si2 system obtained from magnetization measurements, we have chosen the La0.2Tb0.8Mn2Si2 and La0.4Tb0.6Mn2Si2 samples for neutron diffraction.This work was supported by MES of RF (contract No. FEUZ-2020-0050)

    CRYSTAL STRUCTURE AND MAGNETIC TRANSITION IN La1−xTbxMn2Si2 COMPOUNDS

    Full text link
    This work was supported by MES of RF (contract № FEUZ-2023-0020)

    Тепловые насосы как ресурс энергосбережения на объектах железных дорог

    Get PDF
    Since the microclimate in the workplace cannot be considered separately from a number of assessment factors (criteria), the authors justify the choice of heat pumps as a possible alternative to heating from environmental, energy and exergoeconomic viewpoints. This reasoning system is directly related to the specificity of objects of railways and to a set of technological safety factors, justifying reliability of the proposed options.Поскольку микроклимат в производственном помещении нельзя рассматривать изолированно от целого ряда оценочных факторов (критериев), авторы обосновывают выбор тепловых насосов в качестве возможной альтернативы теплоснабжения с экологической, энергетической и эксергоэкономической точек зрения. При этом система аргументации прямо связана со спецификой объектов железных дорог и совокупностью технологических факторов безопасности, надежности предлагаемых вариантов
    corecore