15,123 research outputs found

    A pitfall of piecewise-polytropic equation of state inference

    Full text link
    The only messenger radiation in the Universe which one can use to statistically probe the Equation of State (EOS) of cold dense matter is that originating from the near-field vicinities of compact stars. Constraining gravitational masses and equatorial radii of rotating compact stars is a major goal for current and future telescope missions, with a primary purpose of constraining the EOS. From a Bayesian perspective it is necessary to carefully discuss prior definition; in this context a complicating issue is that in practice there exist pathologies in the general relativistic mapping between spaces of local (interior source matter) and global (exterior spacetime) parameters. In a companion paper, these issues were raised on a theoretical basis. In this study we reproduce a probability transformation procedure from the literature in order to map a joint posterior distribution of Schwarzschild gravitational masses and radii into a joint posterior distribution of EOS parameters. We demonstrate computationally that EOS parameter inferences are sensitive to the choice to define a prior on a joint space of these masses and radii, instead of on a joint space interior source matter parameters. We focus on the piecewise-polytropic EOS model, which is currently standard in the field of astrophysical dense matter study. We discuss the implications of this issue for the field.Comment: 16 pages, 9 figures. Accepted for publication in MNRA

    "Caring for Insiderness": Phenomenologically informed insights that can guide practice.

    Get PDF
    Understanding the ‘‘insider’’ perspective has been a pivotal strength of qualitative research. Further than this, within the more applied fields in which the human activity of ‘‘caring’’ takes place, such understanding of ‘‘what it is like’’ for people from within their lifeworlds has also been acknowledged as the foundational starting point in order for ‘‘care’’ to be caring. But we believe that more attention needs to be paid to this foundational generic phenomenon: what it means to understand the ‘‘insiderness’’ of another, but more importantly, how to act on this in caring ways. We call this human phenomenon ‘‘caring for insiderness.’’ Drawing on existing phenomenological studies of marginal caring situations at the limits of caring capability, and through a process of phenomenologically oriented reflection, we interrogated some existential themes implicit in these publications that could lead to deeper insights for both theoretical and applied purposes. The paper provides direction for practices of caring by highlighting some dangers as well as some remedies along this path

    Prediction of LDEF ionizing radiation environment

    Get PDF
    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements

    Epidemics and percolation in small-world networks

    Full text link
    We study some simple models of disease transmission on small-world networks, in which either the probability of infection by a disease or the probability of its transmission is varied, or both. The resulting models display epidemic behavior when the infection or transmission probability rises above the threshold for site or bond percolation on the network, and we give exact solutions for the position of this threshold in a variety of cases. We confirm our analytic results by numerical simulation.Comment: 6 pages, including 3 postscript figure

    Measurements of micrometeorological parameters for testing large scale models

    Get PDF
    This annual report discusses work accomplished on the FIFE (First International Satellite Land-Surface Climatology) Project. It contains manuscripts and reports during the past year of Grant NAG 5-389. Of its six chapters, three treat soil heat flux, and two deal with information about the FIFE sites. The first chapter on net radiation and the fourth chapter are to be presented at the Agricultural and Forest Meteorology Conference to be held in March 1989 in Charleston, South Carolina

    Radiation exposure of LDEF: Initial results

    Get PDF
    Initial results from LDEF include radiation detector measurements from four experiments, P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also on the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose ratio dependence of a factor approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly. On the trailing edge of the orbiter a range of doses from 6.64 to 2.91 Gy were measured under Al equivalent shielding of 0.42 to 1.11 g/sq cm. A second set of detectors near this location yielded doses of 6.48 to 2.66 Gy under Al equivalent shielding of 0.48 to 15.4 g/sq cm. On the leading edge, doses of 2.58 to 2.10 Gy were found under Al equivalent shielding of 1.37 to 2.90 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses and dose equivalents, for LET in H2O greater than or = 8 keV/micron, were measured with plastic nuclear track detectors (PNTDs) located in two experiments. Also preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils

    Three-dimensional shielding effects on charged particle fluences measured in the P0006 experiment of LDEF

    Get PDF
    Three-dimensional shielding effects on cosmic ray charged particle fluences were measured with plastic nuclear track detectors in the P0006 experiment on Long Duration Exposure Facility (LDEF). The azimuthal and polar angle distributions of the galactic cosmic ray particles (mostly relativistic iron) were measured in the main stack and in four side stacks of the P0006 experiment, located on the west end of the LDEF satellite. A shadowing effect of the shielding of the LDEF satellite is found. Total fluence of stopping protons was measured as a function of the position in the main and side stacks of the P0006 experiment. Location dependence of total track density is explained by the three-dimensional shielding model of the P0006 stack. These results can be used to validate 3D mass model and transport code calculations and also for predictions of the outer radiation environment for the Space Station Freedom

    Charged particle LET-spectra measurements aboard LDEF

    Get PDF
    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack

    Sex Differences in Sexual Arousal and Finger Length Ratio

    Get PDF
    Most men show sexual arousal to one, preferred sex, whereas most women respond to both sexes, regardless of their sexual orientation. A different research program indicates that men have lower second-to-fourth finger length ratios (2D:4D) than women, possibly because men are exposed to higher levels of androgens during prenatal development. We hypothesized that sex differences in sexual arousal patterns are influenced by prenatal androgen exposure and would thus be explained by sex differences in 2D:4D. We measured the sexual response patterns of 139 men and 179 women via genital arousal and pupil dilation to erotic videos, in addition to their 2D:4D. Compared to women, men showed stronger responses to one sex over the other, although this pattern was clearer in genital arousal than pupil dilation. Men also had lower 2D:4D than women. However, there was no evidence that sex differences in sexual arousal related to sex differences in 2D:4D. Thus, whichever factor explains sex differences in sexual arousal patterns may not be reflected in 2D:4D
    corecore