21 research outputs found

    Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains

    Get PDF
    Transcranial focused ultrasound (FUS) is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI). In conjunction with the use of brain-to-computer interface (BCI) techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat), thus creating a brain-to-brain interface (BBI). The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP) with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration) to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0 +/- 3.0% accuracy, with a time delay of 1.59 +/- 1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.open12

    Minimally Invasive Computer-Assisted Stereotactic Fenestration of an Aqueductal Cyst: Case Report

    No full text
    Introduction: Current advances in frame modeling and computer software allow stereotactic procedures to be performed with great accuracy and minimal risk of neural tissue or vascular injury. Case Report: In this report we associate a previously described minimally invasive stereotactic technique with state-of-the-art 3D computer guidance technology to successfully treat a 55-year-old patient with an arachnoidal cyst obstructing the aqueduct of Sylvius. We provide 1 detailed technical information and discuss how this technique deals with previous limitations for stereotactic manipulation of the aqueductal region. We further discuss current advances in neuroendoscopy for treating obstructive hydrocephalus and make comparisons with our proposed technique. Conclusion: We advocate that this technique is not only capable of treating this pathology but it also has the advantages to enable reestablishment of physiological CSF flow thus preventing future brainstem compression by cyst enlargement

    Neurovascular compression in painful tic convulsif

    No full text
    This article describes the case of a 67-year-old woman who presented with a typical left hemifacial spasm of 8-month duration. After 2 months, she experienced lacinating and sharp shock-like pain in the left side of her face affecting the V1 and V2 territories and a discrete attenuation of nauseous reflex on the left side. CT angiography and MRI revealed significant compression of left cranial nerves V, VII, VIII, IX and X by a giant and tortuous vertebro-basilar arterial complex. This case illustrates the nonlinearity of the relationship between the presence of the stressor factor and the actual manifestation of the disease

    Teaching NeuroImages: In vivo visualization of Edinger comb and Wilson pencils

    No full text
    The “direct” and “indirect” pathways play crucial roles in movement disorder pathophysiology. Both traverse from the striatum to the internal pallidum and substantia nigra, the latter detouring to external pallidum and subthalamic nucleus. Anatomically, the pathways manifest within the striatofugal bundle that passes radially through the pallidum in the form of pencil-like tracts (first described by Wilson1; figure 1) before leaving the pallidum toward the substantia nigra in the form of a comb described by Edinger in 18962 (figure 2). A century later, these structures can be visualized in the living human brai

    Neuronal excitability level transition induced by electrical stimulation

    No full text
    In experimental studies, electrical stimulation (ES) has been applied to induce neuronal activity or to disrupt pathological patterns. Nevertheless, the underlying mechanisms of these activity pattern transitions are not clear. To study these phenomena, we simulated a model of the hippocampal region CA1. The computational simulations using different amplitude levels and duration of ES revealed three states of neuronal excitability: burst-firing mode, depolarization block and spreading depression wave. We used the bifurcation theory to analyse the interference of ES in the cellular excitability and the neuronal dynamics. Understanding this process would help to improve the ES techniques to control some neurological disorders.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Sensory abnormalities and pain in Parkinson disease and its modulation by treatment of motor symptoms

    No full text
    Pain and sensory abnormalities are present in a large proportion of Parkinson disease (PD) patients and have a significant negative impact in quality of life. It remains undetermined whether pain occurs secondary to motor impairment and to which extent it can be relieved by improvement of motor symptoms. The aim of this review was to examine the current knowledge on the mechanisms behind sensory changes and pain in PD and to assess the modulatory effects of motor treatment on these sensory abnormalities. A comprehensive literature search was performed. We selected studies investigating sensory changes and pain in PD and the effects of levodopa administration and deep brain stimulation (DBS) on these symptoms. PD patients have altered sensory and pain thresholds in the off-medication state. Both levodopa and DBS improve motor symptoms (i.e.: bradykinesia, tremor) and change sensory abnormalities towards normal levels. However, there is no direct correlation between sensory/pain changes and motor improvement, suggesting that motor and non-motor symptoms do not necessarily share the same mechanisms. Whether dopamine and DBS have a real antinociceptive effect or simply a modulatory effect in pain perception remain uncertain. These data may provide useful insights into a mechanism-based approach to pain in PD, pointing out the role of the dopaminergic system in pain perception and the importance of the characterization of different pain syndromes related to PD before specific treatment can be instituted.Fil: Cury, R. G.. Universidade de Sao Paulo; BrasilFil: Galhardoni, R.. Universidade de Sao Paulo; BrasilFil: Fonoff, E. T.. Universidade de Sao Paulo; BrasilFil: Pérez Lloret, Santiago. Pontificia Universidad Católica Argentina ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Santos Ghilardi, Maria Gabriela dos. Universidade de Sao Paulo; BrasilFil: Barbosa, E. R.. Universidade de Sao Paulo; BrasilFil: Teixeira, M. J.. Universidade de Sao Paulo; BrasilFil: Ciampi de Andrade, Daniel. Universidade de Sao Paulo; Brasi

    Cerebral hemodynamics: concepts of clinical importance

    Full text link
    Cerebral hemodynamics and metabolism are frequently impaired in a wide range of neurological diseases, including traumatic brain injury and stroke, with several pathophysiological mechanisms of injury. The resultant uncoupling of cerebral blood flow and metabolism can trigger secondary brain lesions, particularly in early phases, consequently worsening the patient's outcome. Cerebral blood flow regulation is influenced by blood gas content, blood viscosity, body temperature, cardiac output, altitude, cerebrovascular autoregulation, and neurovascular coupling, mediated by chemical agents such as nitric oxide (NO), carbon monoxide (CO), eicosanoid products, oxygen-derived free radicals, endothelins, K+, H+, and adenosine. A better understanding of these factors is valuable for the management of neurocritical care patients. The assessment of both cerebral hemodynamics and metabolism in the acute phase of neurocritical care conditions may contribute to a more effective planning of therapeutic strategies for reducing secondary brain lesions. In this review, the authors have discussed concepts of cerebral hemodynamics, considering aspects of clinical importance. Alterações hemodinâmicas e metabólicas do encéfalo ocorrem frequentemente em diversas doenças neurológicas, principalmente em condições de traumatismo cranioencefálico e acidente vascular encefálico, com vários mecanismos patofisiológicos lesionais. O desacoplamento resultante do fluxo sanguíneo e do metabolismo encefálico pode resultar em lesões encefálicas secundárias, principalmente nas primeiras fases, e, consequentemente, no agravamento do desfecho neurológico dos pacientes. Diversos fatores influenciam o fluxo sanguí- neo encefálico, entre eles, a concentração sanguínea de gases, viscosidade sanguínea, temperatura corpórea, débito cardíaco, altitude, autorregulação cerebrovascular e acoplamento neurovascular, que é mediado por óxido nítrico (ON), monóxido de carbono (CO), eicosanoides, radicais livres derivados do oxigênio, endotelinas, potássio, íons hidrogênio e adenosinas. Melhor compreensão destes fatores é fundamental para o manejo clínico dos pacientes neurológicos críticos. A avaliação hemodinâmica e metabólica do encéfalo nas lesões encefálicas agudas pode contribuir para o planejamento de estratégias de redução das lesões encefálicas secundárias. Nesta revisão, os autores discutiram princípios da hemodinâmica encefálica, considerando os aspectos de importância clínica

    Optical coherence tomography imaging of the basal ganglia: feasibility and brief review

    No full text
    Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures
    corecore