247 research outputs found

    Experimental study of the competition between Kondo and RKKY interactions for Mn spins in a model alloy system

    Full text link
    The quasicrystal Al-Pd-Mn is a model system for an experimental study of the competition between Ruderman-Kittel-Kasuya-Yoshida (RKKY) and Kondo interactions. First, specific of such alloys, only a few Mn atoms carry an effective spin and their concentration x is tunable over several orders of magnitude, even though the Mn amount is almost constant. Second, the characteristic energy scales for the interactions lie in the Kelvin range. Hence we could study the magnetization on both side of these energy scales, covering a range of temperatures [0.1-100 K] and magnetic fields (mu_B H/k_B= 0 to 5 K) for 22 samples and x varying over 2 decades. Using very general Kondo physics arguments, and thus carrying out the data analysis with no preconceived model, we found a very robust and simple result: The magnetization is a sum of a pure Kondo (T_K=3.35K) and a pure RKKY contributions, whatever the moment concentration is and this surprisingly up to the concentration where the RKKY couplings dominate fully and thus cannot be considered as a perturbation.Comment: 18 pages, 18 figure

    On the low temperature properties and specific anisotropy of pure anisotropically paired superconductors

    Full text link
    Dependences of low temperature behavior and anisotropy of various physical quantities for pure unconventional superconductors upon a particular form of momentum direction dependence for the superconducting order parameter (within the framework of the same symmetry type of superconducting pairing) are considered. A special attention is drawn to the possibility of different multiplicities of the nodes of the order parameter under their fixed positions on the Fermi surface, which are governed by symmetry. The problem of an unambiguous identification of a type of superconducting pairing on the basis of corresponding experimental results is discussed. Quasiparticle density of states at low energy for both homogeneous and mixed states, the low temperature dependences of the specific heat, penetration depth and thermal conductivity, the I-V curves of SS and NS tunnel junctions at low voltages are examined. A specific anisotropy of the boundary conditions for unconventional superconducting order parameter near TcT_c for the case of specular reflection from the boundary is also investigated.Comment: 20 page

    Metabolism and Growth in Arabidopsis Depend on the Daytime Temperature but Are Temperature-Compensated against Cool Nights

    No full text
    Diurnal cycles provide a tractable system to study the response of metabolism and growth to fluctuating temperatures. We reasoned that the response to daytime and night temperature may vary; while daytime temperature affects photosynthesis, night temperature affects use of carbon that was accumulated in the light. Three Arabidopsis thaliana accessions were grown in thermocycles under carbon-limiting conditions with different daytime or night temperatures (12 to 24 degrees C) and analyzed for biomass, photosynthesis, respiration, enzyme activities, protein levels, and metabolite levels. The data were used to model carbon allocation and growth rates in the light and dark. Low daytime temperature led to an inhibition of photosynthesis and an even larger inhibition of growth. The inhibition of photosynthesis was partly ameliorated by a general increase in protein content. Low night temperature had no effect on protein content, starch turnover, or growth. In a warm night, there is excess capacity for carbon use. We propose that use of this capacity is restricted by feedback inhibition, which is relaxed at lower night temperature, thus buffering growth against fluctuations in night temperature. As examples, the rate of starch degradation is completely temperature compensated against even sudden changes in temperature, and polysome loading increases when the night temperature is decreased

    On the thermoelectricity of correlated electrons in the zero-temperature limit

    Full text link
    The Seebeck coefficient of a metal is expected to display a linear temperature-dependence in the zero-temperature limit. To attain this regime, it is often necessary to cool the system well below 1K. We put under scrutiny the magnitude of this term in different families of strongly-interacting electronic systems. For a wide range of compounds (including heavy-fermion, organic and various oxide families) a remarkable correlation between this term and the electronic specific heat is found. We argue that a dimensionless ratio relating these two signatures of mass renormalisation contains interesting information about the ground state of each system. The absolute value of this ratio remains close to unity in a wide range of strongly-correlated electron systems.Comment: 15 pages, including two figure

    Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models.</p> <p>Methods</p> <p>In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth <it>in vitro </it>and in a SCID-rab myeloma model.</p> <p>Results</p> <p>PF4 and p17-70 significantly attenuated VEGF production, both <it>in vitro </it>and <it>in vivo</it>. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts.</p> <p>Conclusions</p> <p>Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis.</p

    Anomalous magnetic field dependence of the thermodynamic transition line in the isotropic superconductor (K,Ba)Bi03

    Get PDF
    Thermodynamic (specific heat, reversible magnetization, tunneling spectroscopy) and transport measurements have been performed on high quality (K,Ba)BiO3_3 single crystals. The temperature dependence of the magnetic field HCpH_{Cp} corresponding to the onset of the specific heat anomaly presents a clear positive curvature. HCpH_{Cp} is significantly smaller than the field HΔH_\Delta for which the superconducting gap vanishes but is closely related to the irreversibility line deduced from transport data. Moreover, the temperature dependence of the reversible magnetization present a strong deviation from the Ginzburg--Landau theory emphasazing the peculiar nature of the superconducting transition in this material.Comment: 4 pages, 4 figures, 28 reference

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation
    • …
    corecore