82 research outputs found

    Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry

    Get PDF
    Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1,2,3,4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle

    A Comparison of the Pitfall Trap, Winkler Extractor and Berlese Funnel for Sampling Ground-Dwelling Arthropods in Tropical Montane Cloud Forests

    Get PDF
    Little is known about the ground-dwelling arthropod diversity in tropical montane cloud forests (TMCF). Due to unique habitat conditions in TMCFs with continuously wet substrates and a waterlogged forest floor along with the innate biases of the pitfall trap, Berlese funnel and Winkler extractor are certain to make it difficult to choose the most appropriate method to sample the ground-dwelling arthropods in TMCFs. Among the three methods, the Winkler extractor was the most efficient method for quantitative data and pitfall trapping for qualitative data for most groups. Inclusion of floatation method as a complementary method along with the Winkler extractor would enable a comprehensive quantitative survey of ground-dwelling arthropods. Pitfall trapping is essential for both quantitative and qualitative sampling of Diplopoda, Opiliones, Orthoptera, and Diptera. The Winkler extractor was the best quantitative method for Psocoptera, Araneae, Isopoda, and Formicidae; and the Berlese funnel was best for Collembola and Chilopoda. For larval forms of different insect orders and the Acari, all the three methods were equally effective

    Laser Induced Creation of Antiferromagnetic 180 Degree Domains in NiO Pt Bilayers

    Get PDF
    The antiferromagnetic order in heterostructures of NiO Pt thin films can be modified by optical pulses. After the irradiation with laser light, the optically induced creation of antiferromagnetic domains can be observed by imaging the created domain structure utilizing the X ray magnetic linear dichroism effect. The effect of different laser polarizations on the domain formation can be studied and used to identify a polarization independent creation of 180 domain walls and domains with 180 different N el vector orientation. By varying the irradiation parameters, the switching mechanism can be determined to be thermally induced. This study demonstrates experimentally the possibility to optically create antiferromagnetic domains, an important step towards future functionalization of all optical switching mechanisms in antiferromagnet

    Safe sessions of channel actions in Clojure: A tour of the Discourje Project

    Get PDF
    To simplify shared-memory concurrent programming, in addition to low-level synchronisation primitives, several modern programming languages have started to offer core support for higher-level communication primitives as well, in the guise of message passing through channels. Yet, a growing body of evidence suggests that channel-based programming abstractions for shared memory also have their issues. The Discourje project aims to help programmers cope with message-passing concurrency bugs in Clojure programs, based on run-time verification and dynamic monitoring. The idea is that programmers write not only implementations, but also specifications (of sessions of channel actions). Discourje then offers a library to ensure that implementations run safely relative to specifications (= “bad” channel actions never happen). This paper gives a tour of the current state of Discourje, by example; it is intended to serve both as a general overview for readers who are unfamiliar with previous work on Discourje, and as an introduction to new features for readers who are familiar

    The 2021 ultrafast spectroscopic probes of condensed matter roadmap

    Get PDF
    In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends

    Structural response of thin-walled austenitic pipes to radiolysis gas detonations

    No full text
    Radiolysis gas is a mixture of gaseous hydrogen and oxygen, which is generated by dissociation of water under the influence of gamma and neutron radiation. Radiolysis gas aggregations can appear for example in safety-relevant piping of nuclear power plants. The detonation of such gas mixtures can not be excluded in all cases. Within the scope of a research project funded by the German Federal Ministry of Economics and Technology (BMWi), the basis for the assessment of the related risk potential for plant operation shall, among others, be provided. Detonation tests and numerical evaluations are performed to simulate detonations of radiolysis gas in pipes with O.D. x t=(114.30×6.02) mm made of austenitic steel under operating pressure of 70 bar. It is observed, that depending on the ratio of detonating gas to nitrogen rupture of the pipe can occur in different distances from the ignition. Due to the high-rate response of the pipes to the detonations, multiple longitudinal cracks and fragmentation occurred in certain cases. For the numerical investigations an appropriate material constitutive law is chosen in order to describe the material behaviour including strain rate sensitivity and thermal softening at high deformations. Several small-size specimen tests are performed in order to evaluate the required material parameters. For determination of the local strain distribution during the tests appropriate optical measurement is used. The material model is validated by numerical simulations of tensile and compressive tests. The numerical simulation of the deformation behaviour of the pipes fits well into the test results
    corecore