503 research outputs found
Uniaxial-stress induced phase transitions in [001]c-poled 0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3
First-order, rhombohedral to orthorhombic, stress-induced phase transitions
have been evidenced by bulk charge-stress measurements and X-ray diffraction
derived lattice strain measurements in [001]c-poled PZN-4.5PT. The transitions
are induced by uniaxial, compressive loads applied either along or
perpendicular to the poling direction. In each case, they occur via rotation of
the polar vector in the Cm monoclinic plane and the induced lattice strain is
hysteretic yet reversible. Although no depoling is observed in the transverse
mode, net depolarization is observed under longitudinal stress which is
important for the use of [001]c-poled PZN-PT and PMN-PT single crystals in
Tonpilz-type underwater projectors.Comment: To be published in Applied Physics Letters, 16 pages, 3 figure
Bichiral structure of feroelectric domain wall driven by flexoelectricity
The influence of flexoelectric coupling on the internal structure of neutral
domain walls in tetragonal phase of perovskite ferroelectrics is studied. The
effect is shown to lower the symmetry of 180-degree walls which are oblique
with respect to the cubic crystallographic axes, while {100} and {110} walls
stay "untouched". Being of the Ising type in the absence of the flexoelectric
interaction, the oblique domain walls acquire a new polarization component with
a structure qualitatively different from the classical Bloch-wall structure. In
contrast to the Bloch-type walls, where the polarization vector draws a helix
on passing from one domain to the other, in the flexoeffect-affected wall, the
polarization rotates in opposite directions on the two sides of the wall and
passes through zero in its center. Since the resulting polarization profile is
invariant upon inversion with respect to the wall center it does not brake the
wall symmetry in contrast to the classical Bloch-type walls. The flexoelectric
coupling lower the domain wall energy and gives rise to its additional
anisotropy that is comparable to that conditioned by the elastic anisotropy.
The atomic orderof- magnitude estimates shows that the new polarization
component P2 may be comparable with spontaneous polarization Ps, thus
suggesting that, in general, the flexoelectric coupling should be mandatory
included in domain wall simulations in ferroelectrics. Calculations performed
for barium titanate yields the maximal value of the P2, which is much smaller
than that of the spontaneous polarization. This smallness is attributed to an
anomalously small value of a component of the "strain-polarization"
elecrostictive tensor in this material
Polarization screening in polymer ferroelectric films: Uncommon bulk mechanism
Charge compensation at the interface is a fundamental phenomenon determining the operation conditions of thin-film devices incorporating ferroelectrics. The underlying mechanisms have been thoroughly addressed in perovskite ferroelectrics where the charge compensation originates from injection through the interface-adjacent layer. Here, we demonstrate that polarization screening in the polymer ferroelectric polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) films can be dominated by charge injection through the bulk, unlike ferroelectric oxides. The experimental evidence relies on polarization imprint under applied field and time-dependence of the dielectric constant. A linearized electrostatic model correctly accounts for the observed trends and links their occurrence to the unique properties of P(VDF-TrFE). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754146
Compositional Inversion Symmetry Breaking in Ferroelectric Perovskites
Ternary cubic perovskite compounds of the form A_(1/3)A'_(1/3)A''_(1/3)BO_3
and AB_(1/3)B'_(1/3)B''_(1/3)O_3, in which the differentiated cations form an
alternating series of monolayers, are studied using first-principles methods.
Such compounds are representative of a possible new class of materials in which
ferroelectricity is perturbed by compositional breaking of inversion symmetry.
For isovalent substitution on either sublattice, the ferroelectric double-well
potential is found to persist, but becomes sufficiently asymmetric that
minority domains may no longer survive. The strength of the symmetry breaking
is enormously stronger for heterovalent substitution, so that the double-well
behavior is completely destroyed. Possible means of tuning between these
behaviors may allow for the optimization of resulting materials properties.Comment: 4 pages, two-column style with 3 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#sai_is
Electrostatic model of atomic ordering in complex perovskite alloys
We present a simple ionic model which successfully reproduces the various
types of compositional long-range order observed in a large class of complex
insulating perovskite alloys. The model assumes that the driving mechanism
responsible for the ordering is simply the electrostatic interaction between
the different ionic species. A possible new explanation for the anomalous
long-range order observed in some Pb relaxor alloys, involving the proposed
existence of a small amount of Pb^4+ on the B sublattice, is suggested by an
analysis of the model.Comment: 4 pages, two-column style with 1 postscript figure embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_orde
Polar phonons in some compressively stressed epitaxial and polycrystalline SrTiO3 thin films
Several SrTiO3 (STO) thin films without electrodes processed by pulsed laser
deposition, of thicknesses down to 40 nm, were studied using infrared
transmission and reflection spectroscopy. The complex dielectric responses of
polar phonon modes, particularly ferroelectric soft mode, in the films were
determined quantitatively. The compressed epitaxial STO films on (100)
La0.18Sr0.82Al0.59-Ta0.41O3 substrates (strain 0.9%) show strongly stiffened
phonon responses, whereas the soft mode in polycrystalline film on (0001)
sapphire substrate shows a strong broadening due to grain boundaries and/or
other inhomogeneities and defects. The stiffened soft mode is responsible for a
much lower static permittivity in the plane of the compressed film than in the
bulk samples.Comment: 11 page
Recommended from our members
Manipulating resource allocation in plants
The distribution of nutrients and assimilates in different organs and tissues is in a constant state of flux throughout the growth and development of a plant. At key stages during the life cycle profound changes occur, and perhaps one of the most critical of these is during seed filling. By restricting the competition for reserves in Arabidopsis plants, the ability to manipulate seed size, seed weight, or seed content has been explored. Removal of secondary inflorescences and lateral branches resulted in a stimulation of elongation of the primary inflorescence and an increase in the distance between siliques. The pruning treatment also led to the development of longer and larger siliques that contained fewer, bigger seeds. This seems to be a consequence of a reduction in the number of ovules that develop and an increase in the fatty acid content of the seeds that mature. The data show that shoot architecture could have a substantial impact on the partitioning of reserves between vegetative and reproductive tissues and could be an important trait for selection in rapid phenotyping screens to optimize crop performance
- …