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ABSTRACT 20 

The distribution of nutrients and assimilates in different organs and tissues is in a 21 

constant state of flux throughout the growth and development of a plant. At key 22 

stages during the life cycle profound changes occur and perhaps one of the most 23 

critical of these is during seed filling. By restricting the competition for reserves in 24 

Arabidopsis plants the ability to manipulate seed size, seed weight, or seed content 25 

has been explored. Removal of secondary inflorescences and lateral branches 26 

resulted in a stimulation of elongation of the primary inflorescence and an increase 27 

in the distance between siliques.  The pruning treatment also led to the 28 

development of longer and larger siliques that contained fewer, bigger seeds. This 29 

seems to be a consequence of a reduction in the number of ovules that develop 30 

and an increase in the fatty acid content of the seeds that mature.  The data show 31 

that shoot architecture could have a substantial impact on the partitioning of 32 

reserves between vegetative and reproductive tissues and could be an important 33 

trait for selection in rapid phenotyping screens to optimise crop performance.  34 

 35 

 36 

 37 

 38 

39 
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INTRODUCTION 40 

Plants accumulate and redistribute macro and micronutrients throughout their life 41 

cycle. Ultimately the plant is seeking to optimise the way it responds to 42 

environmental cues and to integrate these with the genetically determined 43 

elements of development in order to maximise its reproductive potential and 44 

ensure the production and survival of the next generation. Plants, like other living 45 

organisms, can be divided into those that have an r- or a K- reproductive strategy 46 

(MacArthur and Wilson, 1967; Pianka, 1970). Most weed species adopt an r-47 

strategy and produce many thousands of small seeds with minimum investment of 48 

resource per seed; in contrast, many trees invest in relatively few reproductive 49 

units per individual but each unit is associated with a substantial quantity of 50 

resource to help protect and nurture the subsequent generation (Pianka, 1970). For 51 

example, the reproductive propagule of an Arabis weed species is a seed weighing 52 

less than 1mg and sunflower seeds are about 100mg each, whereas coconuts 53 

typically weigh over 1kg.  54 

In order to optimise reproductive potential plants need to (re)mobilise nutrients 55 

from sources to sinks in a highly orchestrated way. This process is spatially and 56 

temporally dependent on the stage of the plant’s life cycle and the reproductive 57 

strategy of the plant under consideration. For instance, an annual plant will 58 

ultimately die after seed filling is complete; in this case the seeds are the means by 59 

which the genetic information of an individual over-winters and survives until 60 

growing conditions become favourable once again. In some species seed dormancy 61 

can last months or even years and provides a highly effective means of spreading 62 
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the timing of germination and potentially avoiding adverse environmental 63 

challenges (Barton, 1961). Work at the Millennium Seed Bank at the Royal Botanic 64 

Gardens, Kew revealed that 200 year old seeds, collected by the Dutch explorer Jan 65 

Teerlink during a voyage to the Cape of Good Hope in 1803, were still viable. The 66 

species included a Leucospermum from the family Proteaceae, and two species 67 

from the family Fabaceae including an Acacia and a legume called Liparia villosa, 68 

indicating a great range of species for which long-term dormancy is a viable option. 69 

For annual plants such as Arabidopsis, under optimal growth conditions, the 70 

process of resource allocation ensures that ultimately nearly all the nitrogen 71 

resources produced during the photosynthetic period will be remobilised from the 72 

vegetative tissues into the developing seeds. In contrast, perennial plants commit a 73 

more limited proportion of resources to the reproductive phase of their life cycle as 74 

it is advantageous to retain some photosynthetic capacity for as long as the 75 

environmental conditions allow. For this reason, it has been speculated that the 76 

anthocyanins produced in autumnal leaves provide photoprotection to enable 77 

maximal re-absorption during times when the leaves are vulnerable to the effects 78 

of high light accompanied by low temperatures (Archetti et al., 2009). For a 79 

perennial plant it is less essential to ensure reproductive success every year due to 80 

their longer life spans, and tolerance to environmental stress is often achieved by 81 

slower growth in addition to niche adaptations such as an evergreen habit. Bulbous 82 

plants provide an example where temperature is key to regulating source-sink 83 

balance; lower temperatures result in delayed leaf senescence and larger bulbs due 84 

to an improved equilibrium between carbon fixation capacity and sink strength 85 

(Gandin et al., 2011). Having lived for over 4800 years the bistlecone pine, 86 
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Methuselah, is a prime example of a plant’s ability to endure abiotic stresses. Grime 87 

(1977) proposed that resource-allocation strategies in plants could be divided into 88 

three categories: Competitive, Stress-tolerant and Ruderal Strategies (denoted C-, 89 

S- and R-strategies respectively). Grime summarised the consequences of C-, S- and 90 

R-strategies on resource allocation for plant growing in three broad habitat 91 

categories (Table 1) and it is interesting to review these in the light of considering 92 

crop plants and the habitats under which they are grown in a modern agricultural 93 

environment.   94 

RESOURCE ALLOCATION STRATEGIES OF EXISTING CROP PLANTS 95 

The major cereal crops have undergone many centuries of domestication and, in 96 

the developed world, are typically grown in environments where water and 97 

nutrients are plentiful. Selection by ‘man’ has promoted C-strategy plants that 98 

compete well in a monoculture and make  large changes in root/shoot biomass as a 99 

consequence of stress, meaning that when these crops are grown in environments 100 

experiencing prolonged stress they survive less well (see Table 1). This may be one 101 

explanation why the major grain crops of the world do not yield well in countries 102 

which habitually experience high levels of abiotic (or biotic) stresses , unlike plants 103 

native toarid environments which can respond quickly to resource pulses. For 104 

instance, high temperatures and low rainfall across southern Australia in 1982, 105 

1994 and 2004 restricted the total wheat yield to less than 10 million tonnes, 106 

whereas the favourable environment in the 1983/4 season that followed the major 107 

drought in 1982 produced in excess of 22 million tonnes (Sutton, 2009). In contrast, 108 

more recently domesticated crop plants, such as Brassica species, retain the weedy 109 
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characteristics of their wild progenitors and continue to adopt an R-strategy. In 110 

consequence, these plants produce seed very rapidly, especially when experiencing 111 

abiotic stress (Sinniah et al., 1998), and ensure that the genepool is carried 112 

forwards to the next generation. In these situations it would appear that some seed 113 

can be produced with such speed that very little resource reallocation is required; 114 

this is perhaps not surprising since the seed in a Brassicaceous plant is itself 115 

photosynthetic in the initial stages of its development, but it is surrounded by a 116 

photosynthetic pod that can supply photosynthates at a highly localised site (Hua at 117 

al., 2011). However, if Brassica crops are grown under conditions of minimal abiotic 118 

stress they undergo a normal pattern of leaf and pod senescence that suggests 119 

resource reallocation does occur to enhance seed number and quality. 120 

Observations of Brassica rapa and Brassica napus inflorescences  indicates that 121 

seed development is frequently terminated following development of the first-122 

formed pods and resumes at the end of flowering, leading to  regions of the 123 

inflorescence without mature siliques (Figure 1). McGregor (1981) also reported 124 

high levels of pod abortion in B. campestris and B. napus which was attributed to 125 

over production of flowers and pod formation sites, so that a plant retains spare 126 

pods which can fully develop should any become damaged, indicating that pod 127 

abortion and the development of excess pod formation sites is normal and not just 128 

a response to injury or biotic/abiotic stress. The ability to selectively abort pods 129 

during periods of high abiotic stress, and resume once the stress has diminished, 130 

would enable plants to become S-strategists. Bosac et al. (1994) and Stewart et al. 131 

(1996) both found that exposing the racemes of B. napus or B. campestris to ozone 132 

caused pod abortion, pod abscission or fewer seeds per pod. Black et al. (2000) 133 
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made the same observation and raised the possibility that for a wild plant this was 134 

potentially disadvantageous; if seed size is too low then plants may lose their 135 

competitive advantage against those growing nearby. 136 

Crop breeding programmes still largely focus on increasing yield, particularly in the 137 

light of the goal to feed an ever-increasing global population. Most crops originate 138 

from R-strategy plants, yet breeding programmes are frequently orientated 139 

towards C-strategy plants. In those countries where land use for crops is marginal 140 

and abiotic stress levels are high it might be more desirable to select for S-strategy 141 

plants. Although S-strategy plants can be overgrown by competitors in a wild 142 

habitat, in farmed land this is manageable through weed control or less dense seed 143 

planting rates. A crop ideotype would be an S-strategy plant with the ability of an R-144 

strategy plant to reproduce rapidly when the environmental conditions become 145 

harsh, thus ensuring at least a minimum yield each year.  146 

MANIPULATING SOURCE:SINK RATIOS  147 

Using the R-strategy plant Arabidopsis as a model to determine how the 148 

manipulation of resource allocation can impact on seed quality and yield it has been 149 

possible to explore how a crop ideotype might be optimised and developed in a 150 

breeding programme. Plants were grown under near optimal conditions in order to 151 

maximise seed number. The objective was to ascertain how much plasticity in 152 

resource allocation was retained by a plant and whether there was potential to 153 

increase seed size, yield and quality to make an R-strategy plant invest additional 154 

resources into seeds. If the mechanism of resource allocation can be better 155 

understood then it can be manipulated in crop plants that still harbour weedy traits 156 
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from their ancestors in order to produce improved varieties. Such varieties might 157 

be ‘tailored’ to suit differing environmental conditions. Selective ‘pruning’ of parts 158 

of the inflorescence was carried out to alter source-sink relationships across the 159 

plant. Control plants were compared to those that had either secondary 160 

inflorescences removed, or all secondary inflorescences and lateral branches from 161 

the main inflorescence removed, thus representing a decrease in sink strength as 162 

the pruning treatments became more severe (see Fig. 2A).  163 

Analyses of the growth morphology of the plants revealed that the main 164 

inflorescence became significantly elongated as pruning became more severe, but 165 

that the number of pods on the main stem remained the same as a consequence of 166 

larger spaces between the pod formation sites (Fig. 2B, C). The rationale for 167 

stimulating inflorescence elongation is unclear, as any competition for light would 168 

have been reduced not enhanced by the pruning treatment. Whether this change 169 

resulted from an alteration in cell number or size has yet to be determined, 170 

however Dale (1959) also observed stem elongation in disbudded cotton plants. 171 

Apical dominance was mechanically reinforced by the selective removal of lateral 172 

branches and secondary stems and this seems to have resulted in the main 173 

inflorescence becoming even more dominant, but the advantage of this is not clear. 174 

An alternative explanation is that without the drain of lateral branches on 175 

photosynthate reserves the pruned plants were able to implement a more extreme 176 

shade avoidance response and elongate more than their highly branched 177 

competitors in order to capture the available light more effectively. Rosette leaf 178 

number and biomass increased significantly with the pruning of lateral and 179 
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secondary branches (sinks), but the rate of senescence of individual leaves was the 180 

same as the control plants. This finding is in agreement with that of Nooden and 181 

Penney (2001) who found that stem removal increased the longevity of the plant 182 

but not of individual rosette leaves, enabling the rosette to remain a source of 183 

photosynthates and other metabolites for much longer (Bennett et al., 2011; Fig 184 

2D). In common with findings in soybean (Seddigh and Jolliff, 1986), it would appear 185 

that the strength of the sink is the dominant factor in determining resource re-186 

allocation from rosette leaves into the pods. Without the pull from multiple 187 

branches containing developing seeds, the rosette continues to develop without 188 

overall senescence in the absence of other environmental cues such as day length 189 

or temperature change. Other experiments in soybean have shown that in the 190 

absence of sufficient sink strength the stomata close, leading to a reduction in 191 

photosynthesis, although the consequence of this on the distribution of existing 192 

photoassimilates and the timing of senescence was not established (Setter and 193 

Brun, 1980). However, some authors contest the theory that reproductive 194 

development is intrinsically linked to leaf senescence in Arabidopsis. Hensel et al. 195 

(1993) reported that the reproductive organs had no influence on leaf senescence 196 

and rosette leaf age was the only driver of senescence; Nooden and Penny (2001) 197 

took the idea a step further and argue that loss of meristem activity represents the 198 

primary signal for whole plant senescence. Early research on source-sink 199 

relationships in plants developed the ‘self-destruct hypothesis’ (Sinclair and De Wit, 200 

1976) which assumed that increased nutrient remobilisation out of the leaves was 201 

the driver for early senescence. Later researchers in the field found that the rate of 202 

photosynthesis in leaves was reduced when sink strength was reduced 203 
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(Wittenbach, 1983; Crafts-Brander, 1984) and Seddigh and Jolliff (1986) proposed 204 

that increasing sink strength would drive increased production of carbon and 205 

nitrogen by the leaves, thus switching the emphasis back in line with our current 206 

thinking that sink strength ‘pulls’ resources from the rosette (Bennett et al., 2011). 207 

Wild type Arabidopsis plants have been shown to have sub-maximal levels of 208 

nitrogen remobilisation from the leaves into developing seeds, but if over-209 

expression of cytosolic pyruvate, orthophosphate dikinase (PPDK) is engineered 210 

then nitrogen is exported more rapidly from senescing leaves and seeds on the 211 

transgenic lines were larger than wild type (Taylor et al., 2010). This work 212 

demonstrates that rosette nitrogen is present in excess of that demanded by the 213 

sink (pods) but it is only metabolised in proportion to the pull from the developing 214 

pods. The PPDK over-expressing transgenics provide evidence that it is possible to 215 

alter the dynamics of remobilisation and source-sink relationships and the capacity 216 

for additional resource accumulation is present in the seeds, even in a species such 217 

as Arabidopsis where lipid is the primary form of storage metabolite.   218 

RESOURCE ALLOCATION TO THE PODS CAN BE ALTERED 219 

Reduction in sink strength from pruning lateral and secondary branches altered pod 220 

morphology compared to the control. Resultant pods were longer and with a bigger 221 

area (Fig. 2E), however, the total number of seeds within each pod was significantly 222 

reduced, yet the total weight of seeds in the most extreme manipulation was 223 

significantly heavier (Fig. 2F). These observations indicate that when the number of 224 

reproductive sites was reduced the number of seeds that even start to develop 225 

within a pod is less than the total that could be theoretically sustained within a pod, 226 
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as opposed to lots of seeds being formed and then some aborted. These data 227 

suggest that the sink strength is determined by the number of pods rather than the 228 

number of seeds. For a weedy species such as Arabidopsis there is a logic to the 229 

argument that the minimum unit that a plant ‘measures’ is a pod rather than a 230 

seed. Since pod shatter will release all the seeds within that pod simultaneously it 231 

makes ecological sense that the rate of development of all seeds within a single pod 232 

is highly coordinated. If the number of pods is too small to pull sufficient resources 233 

from the rosette then the co-ordination sequence could be reprogrammed to 234 

enable a few large, viable seeds to develop rather than lots of small seeds with 235 

impaired viability. The mechanism by which a pod is able to ‘measure’ the amount 236 

of resource remains unexplained but our observations indicate that if sink strength 237 

is low then not all the potential sites of attachment in a pod are used to develop 238 

seeds. As a consequence low numbers of seeds develop per pod to guarantee that 239 

all the seeds formed will meet a minimum threshold of resources required for 240 

viability. One hypothesis is that R-Strategy annual plants operate a ‘minimum 241 

viability threshold for reproductive success’ and ensure that some seeds will be 242 

produced with the best chance of survival. If conditions remain favourable and 243 

further resources are available then the plant will invest in more units of 244 

reproduction (pods), thus increasing sink strength and mobilising resources more 245 

fully from the rosette. This is evident when pods from the main inflorescence of un-246 

pruned plants are compared to those from the lateral branches. The pods on the 247 

lower section of the main inflorescence are the first formed and contain the 248 

heaviest seeds, whereas the later formed pods on lateral branches contain lighter 249 

and significantly fewer seeds (Fig. 3). Seeds from pods on lateral branches have high 250 
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viability, but further detailed experiments are necessary to establish if there is a 251 

fitness cost if these smaller seeds are selected over multiple generations. Other 252 

researchers have raised the possibility that an R-strategy plant such as Arabidopsis 253 

makes a late, or even continuous, decision about the volume of seed set based on 254 

the available nutrients during the reproductive stage, rather than it being 255 

predetermined by growth and development during the vegetative phase (Schulze et 256 

al., 1994).  257 

The observation that seed size within a pod can be manipulated by source/sink 258 

manipulation raises the question whether this is the consequence of altered 259 

partitioning of resource allocation into each seed or pod. Seeds accumulate a 260 

mixture of lipids, proteins and carbohydrates as they develop. In Arabidopsis the 261 

protein and carbohydrate are mostly in the embryo, whereas the endosperm 262 

contains the majority of the lipid component. The experiments reported here have 263 

revealed that enhancing the source strength through selective stem removal causes 264 

a trend towards an increase in the fatty acid content of the seeds, although protein 265 

content did not alter (Fig. 4A, B). This suggests that the developing embryo is of a 266 

fixed size, but the endosperm component can increase beyond a minimum 267 

threshold level. Partitioning of individual fatty acids did not change, indicating that 268 

the ratio is genetically determined and therefore fixed. In Arabidopsis the dominant 269 

fatty acids are linoleic acid, eicosenoic acid and linolenic acid which are omega 6, 270 

omega 9 and omega 3 unsaturated fatty acids respectively. These were found in 271 

similar proportions to that established by other workers (Katavic et al., 1995; 272 

Penfield et al., 2004), although less oleic acid (omega 9) was detected than both of 273 
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these groups who found comparable levels in both the embryo and endosperm of 274 

Arabidopsis seeds.  275 

IMPLICATIONS FOR CROP PRODUCTION 276 

An analysis of all the different parameters we have measured in relation to 277 

resource allocation in Arabidopsis has revealed that seed and pod number per plant 278 

is more closely related to protein and lipid content than seed mass or pod area (Fig. 279 

5). This analysis suggests that if the target is to increase the number of viable seeds 280 

per pod the consequence should be further mobilisation of lipid and protein 281 

content into each individual pod which will result in a redistribution of these 282 

resources amongst a greater number of seeds within those pods. However, the 283 

overall mass of seeds per pod is unlikely to be increased so the usefulness of 284 

increasing seed number is limited to production scenarios where the aim is to 285 

increase the number of seeds that can give rise to viable plants e.g. seed production 286 

for the leafy vegetable market.  If the target is to increase seed size and nutrient 287 

content per se then it is necessary to alter the source-sink relationship within the 288 

plant and to start to shift the architecture away from that of an obligate R-strategy 289 

plant and towards that of an S- or C-strategy plant.  290 

There are many reasons why the typical architecture observed in an R-strategy 291 

plant that has been adapted for crop production is less than optimal. Most ruderal 292 

plants either have a highly branched habit, if they are dicotyledonous, with minimal 293 

coordination of pod development and shattering between branches or, in the case 294 

of monocotyledonous plants, the natural architecture is to produce numerous 295 

tillers with a consequential separation of heading dates and maturation rates on 296 
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different tillers. In a few examples (e.g. wheat, barley, rice) long-term selection of 297 

domesticated crops has enabled much closer development of seed heads present 298 

on different tillers, but in years when the environment is less favourable, for 299 

example when late season rain affects a wheat crop, new tillers are produced that 300 

mature several weeks after the main inflorescence. In crops that have received far 301 

less attention from plant breeders, such as the numerous small grain crops grown 302 

in Africa and Asia, the coordination between flowering heads is extremely poor, 303 

leading to a considerable reduction in the proportion of potential yield from each 304 

plant that is actually harvested. For these reasons it would be desirable to replicate 305 

the architecture enforced by our selective stem removal experiments, but it is 306 

important to appreciate the potential consequences of the change for seed yield 307 

and quality.  308 

It is well known that adjusting the seed rate (planting density) for numerous crops 309 

can have a large influence on plant morphology. Plants grown closely together will 310 

reduce the number of branches they produce and adopt a shade avoidance strategy 311 

of elongating the main stem to capture the maximum amount of available light 312 

(Robson et al., 1996). Whilst excessive stem height can lead to problems with 313 

lodging there are ways of preventing this through the introgression of genes that 314 

lead to dwarfing, such as Rht in wheat, and the resultant plants are then able to 315 

concentrate their resource allocation into the seed head or pods on the primary 316 

inflorescence. Since non-branched plants are grown in a much more densely 317 

planted stand the actual yield per m
2
 may not alter significantly, but the 318 

coordination will be greatly improved by achieving a monoculture of primary 319 
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inflorescences from any crop, meaning more of the seeds formed will actually be at 320 

the optimal harvest stage simultaneously.  321 

What has become clear from the above findings and from existing literature is that 322 

increasing the nutrient supply to the plants during the vegetative stage does not 323 

guarantee an increase in yield and/or seed quality. Masclaux-Daubresse and 324 

Chardon (2011) showed that nitrogen limitation negatively affected plant biomass, 325 

yield, and harvest index but did not change the dry weight of individual seeds. 326 

There is evidence that the leaves produce photosynthates to an excess of those 327 

required by the developing pods and seeds and that there is a positive feedback 328 

loop through which the pods (in the case of a Brassicaceous plant) pull the 329 

resources they need from the rosette. Whilst supplying adequate nutrition to the 330 

leaves and roots will avoid morphological constraints imposed by a starvation 331 

stress, more nutrition is not necessarily a guarantee of greater yield (Allen & 332 

Morgan, 1972) and a restricted nutrient supply does not necessarily mean that 333 

senescence will occur more rapidly; Abdallah et al. (2011) demonstrated that short 334 

or long-term sulphur limitation delays senescence and allows the plant to 335 

remobilise much more sulphur and nitrogen out of its leaves. Agronomic 336 

consideration should be given to treatments that would make plants increase the 337 

rate of resource remobilisation from the source to the sink, for example increasing 338 

the expression of PPDK (Taylor et al., 2010) or Arabidopsis thaliana NITRATE 339 

TRANSPORTER2.1 (ATNRT2.1; Chopin et al., 2007), or ways to adjust the feedback 340 

mechanism between source and sink and how it changes through different stages 341 

of development. Since these are rather subtle changes it is likely to fall to plant 342 
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breeders to target suitable genes that will change developmental patterns of 343 

resource allocation and tip the delicate balance of source sink relationships in the 344 

appropriate direction at different stages of crop growth.  345 

PLANT BREEDING TARGETS FOR ALTERED ARCHITECTURE AND RESOURCE 346 

ALLOCATION 347 

The control of branch formation in plants has become much better characterised 348 

over recent years. Shoot and root branching is in part mediated by the MAX family 349 

of genes that function through regulating the strigolactone pathway. Recessive 350 

mutants of MAX2 exhibit excessive branching (Stirnberg et al., 2002) and MAX2 351 

encodes an F-Box leucine rich repeat protein that modulates strigolactone 352 

signalling, reportedly by targeting the protein for ubiquitination and degradation by 353 

the 26S proteasome. Strigolactones appear to act downstream of auxin, and the 354 

two plant growth regulators interact so that auxin is able to mediate apical 355 

dominance by inducing the expression of strigolactone biosynthesis genes (Brewer 356 

et al., 2009). MAX2 was originally isolated as ORE9, a gene involved in promoting 357 

leaf senescence and thereby potentially increasing the source of metabolites 358 

available for seed production (Woo et al., 2001). It is interesting to note that 359 

max2/ore9 mutants exhibit increased branching but show delayed plant 360 

senescence. In contrast, silencing of the BRANCHED1b gene resulted in increased 361 

branching in tomato, but no notable change in fruit maturation or seed 362 

development (Martin-Trillo et al., 2001). BRC1b, along with FINE CULM1 are 363 

believed to be downstream of strigolactone synthesis and presumably downstream 364 

of resource allocation during senescence, since fruit development and ripening are 365 
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not altered in the plants. Clearly the consequences of this genetic manipulation 366 

differs from that brought about by pruning treatments and it would be interesting 367 

to determine if the mutations above resulted in the production of more or heavier 368 

seeds. Work by Abreu and Munné-Bosch (2009) with the NahG transgenics and sid2 369 

mutations in Arabidopsis, both of which reduce salicylic acid synthesis, showed that 370 

seed production was increased by 4.4-fold and 3.5-fold respectively, compared to 371 

the wild type. Salicylic acid deficiency also resulted in higher seed nitrogen content 372 

and increased pro-vitamin A and vitamin E than in wild type plants. NahG and sid2 373 

both exhibited increased branching per plant, along with reduced seed weight per 374 

100 seeds, increased seed number per fruit and per plant. These results support 375 

those we found with manipulation of architecture by pruning; in both cases the 376 

least branched phenotype has the highest seed weight and the fewest seeds per 377 

pod.   378 

Other mutants that have already been characterised have the potential to be 379 

utilised in the development of crops with altered resource allocation, many of 380 

which are also involved in plant growth regulator signalling (Quirino et al., 2000). 381 

Improved resource allocation, and consequentially yield enhancement, was 382 

achieved in rice by reducing the expression of the ethylene receptor ETR2, which 383 

caused a 4% increase in thousand grain weight by adjusting starch acclimation and 384 

increasing sugar translocation into the grains (Wuriyanghan et al., 2009). It is well 385 

known that several mutants in ethylene signalling pathways result in delayed 386 

senescence of the leaves in dicotyledonous plants (Grbic and Bleecker, 1995) and 387 

this may have the potential to alter seed filling at a later stage in development. Ma 388 
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and Wang (2003) identified the ETR1 homologue in wheat and initial experiments 389 

suggest that it is involved in integrating signals from other hormones, such as 390 

jasmonic acid, to regulate leaf senescence. Experiments that modulated cytokinin 391 

signalling via a SAG12 feedback loop have shown that leaf senescence can be 392 

significantly delayed if cytokinin content in the leaves is kept high (Gan and 393 

Amasino, 1995) and that this can enhance yield, although the impact of this 394 

manipulation has been shown to be dependent on nutrient availability and under 395 

limited N supply the transgenics had significantly lower fruit dry weight (Wingler et 396 

al., 2005). Using this strategy to specifically increase cytokinin content in the roots 397 

of tomato plants has been reported to increase fruit yield by 30% (Ghanem et al., 398 

2011). Cytokinins also appear important in modulating stress responses; when IPT 399 

was placed under the regulation of a stress-responsive SARK promoter in rice 400 

source⁄sink modifications led to improved drought tolerance and increased grain 401 

yield under water-stress (Peleg et al., 2011). As a staple food crop, rice architecture 402 

has been extensively researched and a recently identified point mutation in 403 

OsSPL14 was reported to result in the “ideal” plant architecture by producing a 404 

taller plant with fewer tillers, denser panicles and enhanced grain yield per panicle 405 

(Jiao et al., 2010). The identification of such alleles, which not only affect rice 406 

architecture but also yield, may provide targets for future breeding programs. 407 

IMPLICATIONS FOR CROP DEVELOPMENT 408 

The example given in the section above is a prime illustration of how below-ground 409 

events influence the development of above-ground development and architecture. 410 

Soil compaction can have serious consequences for the development of above-411 
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ground biomass. Dry mass in barley was reduced by over 50% when soil bulk 412 

density was increased from 1.1 to 1.7 g.cm
-3

 (Mulholland et al., 1996) with a 413 

concomitant increase in xylem abscisic acid content in the compacted samples. 414 

Some attempts have been made to relate soil compaction in different soils types to 415 

yield in cereals (Hamza and Anderson, 2005), but without the ability to directly 416 

observe below ground root architecture it will be difficult to assess how resource 417 

allocation is related to soil structure across the whole plant.  418 

The need for rapid phenotyping methods for plants growing in vivo has led to the 419 

advent of techniques such as microscale X-ray Computed Tomography (microCT) 420 

which enables root systems to be investigated in sufficient detail to provide 421 

information about architecture as well as biomass (Lucas et al., 2011). Other 422 

phenomics centres are being established to investigate above-ground architecture 423 

(Berger et al., 2010). Together these techniques will provide a better understanding 424 

of how overall plant architecture is regulated, the relationship of architecture to 425 

crop yield, an understanding of the variability that exists even between plants 426 

grown in a monoculture, and therefore how best  precision agriculture can be 427 

exploited to optimise plant growth and seed/fruit development. 428 
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TABLE  

Table 1. Morphogenetic responses to desiccation, shading, or mineral nutrient 

stress of competitive, stress tolerant, and ruderal plants and their ecological 

consequences of three types of habitat (Reproduced from Grime, 1977).  

Strategy 
Response to 

stress 
Habitat 1 

a
 Habitat 2 

b
 Habitat 3 

c
 

Competitive 

Large and 

rapid changes 

in root:shoot 

ratio, leaf 

area and root 

surface area 

Tendency to 

sustain high 

rates of 

uptake of 

water and 

mineral 

nutrients to 

maintain dry 

matter 

production 

under stress 

and to 

succeed in 

competition 

Tendency to 

exhaust reserves 

of water and/or 

mineral 

nutrients both in 

rhizoshere and 

within the plant; 

etiolation in 

response to 

shade increases 

susceptibility to 

fungal attack 

Failure rapidly 

to produce 

seeds reduces 

chance of 

rehabilitation 

after 

disturbance 

Stress 

tolerant 

Changes in 

morphology 

slow and 

often small in 

magnitude 

Overgrown by 

competitors 

Conservative 

utilisation of 

water, mineral 

nutrients and 

photosynthate 

allows survival 

over long 

periods in which 

little dry matter 

production is 

possible 

Ruderal 

plants 

Rapid 

curtailment 

of vegetative 

growth and 

diversion of 

resources 

into seed 

production 

Chronically low 

seed production 

fails to 

compensate for 

high rate of 

mortality 

Rapid 

production of 

seeds ensures 

rehabilitation 

after 

disturbance 

a 
In the early stages of productive, undisturbed habitats (stresses mainly plant 

induced) and coinciding with competition. 

b
 In other continuously unproductive habitats (stresses more or less constant and 

due to unfavourable climate and/or soil) or in the late stages of succession to 

productive habitats. 
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c
 In severely disturbed, potentially productive habitats (stresses either a prelude to 

disturbance e.g. moisture stress preceding plant fatalities or plant induced), 

between period of disturbance.  
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FIGURE LEGENDS 

Figure 1. Brassica napus floral inflorescence showing regions of pod abortion.  

Figure 2. Morphological influences on resource allocation in Arabidopsis. (A) The 

three selective stem removal treatments; from left to right: control, secondary 

branches removed, secondary and lateral branches removed (B) Height of the main 

inflorescence from each treatment (C) Distance between the pods on the primary 

inflorescence (D) Images of the rosettes at the end of flowering (E) Pod area and 

length for each treatment (F) Seed number and weight per pod. N=10 unless 

otherwise stated on graph. * indicates significant differences between the control 

and treatments (P <0.05; determined by ANOVA followed by Tukey’s post-hoc 

analysis). Plants were grown under controlled conditions with a 16h light, 8h dark 

cycle. Temperature was maintained throughout at 20°C and 55% RH.  

Figure 3. Comparison of thousand grain weight and the number of seeds per pod 

between the main inflorescence and lateral branches in un-manipulated plants. 

N=10. * indicates significant differences between the control and treatments (P 

<0.05; determined by ANOVA followed by Tukey’s post-hoc analysis)  

Figure 4. Resources allocated to the seeds. (A) Seed protein concentration from 

each treatment. Total protein quantification was performed using the Thermo 

Scientific Pierce BCA protein assay kit according to the manufacturer’s protocol. The 

microtitre plate was read at an absorbance of 540nm. (B) Seed fatty acid profile to 

show amounts and proportional quantification of seeds from each treatment. N= 

10 replicates per treatment. No significant differences were detected but the trend 

was for an increase in fatty acid content as the manipulations become more severe. 
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Seeds were freeze dried and the fatty acids measured via direct transmethylation 

(Smooker et al., 2011). Pentadecanoic acid and methyl heptadecanoate were used 

as internal standards, the former being present during the transmethylation 

process whilst the later was added just before the samples were run on the GC. 1µl 

aliquots of the heptane phase containing the fatty acid methyl esters (FAMEs) were 

analysed by gas chromatography with flame ionization detection (Agilent G1530a) 

using a CP-Sil 88 column (50 m length x 0.25 mm id., 0.25 µm film thickness; 

Chrompack). The GC conditions were: split mode injector (50:1), flame ionizer 

detector temperature 260°C, oven temperature 130°C for 3 min and increasing at 

10°C/min for 6 min: total analysis time 20 min. FAMEs were identified by 

comparison to the Supelco FAME mix (Sigma-Aldrich). 

Figure 5. Dendrogram of resource allocation variables generated by cluster analysis 

illustrating the relationship between plant architecture and the partitioning of 

resources.  
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Figure 1.  
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Figure 4. 
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Figure 5.  
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