1,558 research outputs found
Chaos, Coherence and the Double-Slit Experiment
We investigate the influence that classical dynamics has on interference
patterns in coherence experiments. We calculate the time-integrated probability
current through an absorbing screen and the conductance through a doubly
connected ballistic cavity, both in an Aharonov-Bohm geometry with forward
scattering only. We show how interference fringes in the probability current
generically disappear in the case of a chaotic system with small openings, and
how they may persist in the case of an integrable cavity. Simultaneously, the
typical, sample dependent amplitude of the flux-sensitive part of the
conductance survives in all cases, and becomes universal in the case of a
chaotic cavity. In presence of dephasing by fluctuations of the electric
potential in one arm of the Aharonov-Bohm loop, we find an exponential damping
of the flux-dependent part of the conductance, , in term of the traversal time through the arm
and the dephasing time . This extends previous works on dephasing in
ballistic systems to the case of many conducting channels.Comment: 8 pages, 4 figures in .eps format; Final version, to appear in
Physical Review
Robustness and modularity properties of a non-covalent DNA catalytic reaction
The biophysics of nucleic acid hybridization and strand displacement have been used for the rational design of a number of nanoscale structures and functions. Recently, molecular amplification methods have been developed in the form of non-covalent DNA catalytic reactions, in which single-stranded DNA (ssDNA) molecules catalyze the release of ssDNA product molecules from multi-stranded complexes. Here, we characterize the robustness and specificity of one such strand displacement-based catalytic reaction. We show that the designed reaction is simultaneously sensitive to sequence mutations in the catalyst and robust to a variety of impurities and molecular noise. These properties facilitate the incorporation of strand displacement-based DNA components in synthetic chemical and biological reaction networks
DNA as a universal substrate for chemical kinetics
Molecular programming aims to systematically engineer molecular and chemical systems of autonomous function and ever-increasing complexity. A key goal is to develop embedded control circuitry within a chemical system to direct molecular events. Here we show that systems of DNA molecules can be constructed that closely approximate the dynamic behavior of arbitrary systems of coupled chemical reactions. By using strand displacement reactions as a primitive, we construct reaction cascades with effectively unimolecular and bimolecular kinetics. Our construction allows individual reactions to be coupled in arbitrary ways such that reactants can participate in multiple reactions simultaneously, reproducing the desired dynamical properties. Thus arbitrary systems of chemical equations can be compiled into real chemical systems. We illustrate our method on the LotkaāVolterra oscillator, a limit-cycle oscillator, a chaotic system, and systems implementing feedback digital logic and algorithmic behavior
Probe-Configuration-Dependent Decoherence in an Aharonov-Bohm Ring
We have measured transport through mesoscopic Aharonov-Bohm (AB) rings with
two different four-terminal configurations. While the amplitude and the phase
of the AB oscillations are well explained within the framework of the
Landaur-B\"uttiker formalism, it is found that the probe configuration strongly
affects the coherence time of the electrons, i.e., the decoherence is much
reduced in the configuration of so-called nonlocal resistance. This result
should provide an important clue in clarifying the mechanism of quantum
decoherence in solids.Comment: 4 pages, 4 figures, RevTe
The electron lifetime in Luttinger liquids
We investigate the decoherence of the electron wavepacket in purely ballistic
one-dimensional systems described through the Luttinger liquid (LL). At a
finite temperature and long times , we show that the electron Green's
function for a fixed wavevector close to one Fermi point decays as
, as opposed to the power-law behavior occurring at short
times, and the emerging electron lifetime obeys for
spinful as well as spinless electrons. For strong interactions, , reflecting that the electron is not a good Landau quasiparticle in LLs. We
justify that fractionalization is the main source of electron decoherence for
spinful as well as spinless electrons clarifying the peculiar electron mass
renormalization close to the Fermi points. For spinless electrons and weak
interactions, our intuition can be enriched through a diagrammatic approach or
Fermi Golden rule and through a Johnson-Nyquist noise picture. We stress that
the electron lifetime (and the fractional quasiparticles) can be revealed from
Aharonov-Bohm experiments or momentum resolved tunneling. We aim to compare the
results with those of spin-incoherent and chiral LLs.Comment: 20 pages, 1 column, 6 figures, 1 Table; expands cond-mat/0110307 and
cond-mat/0503652; final version to appear in PR
On-Campus Solar PV Lab: Component Selection is Only the Beginning
The work of the Solar PV Team is to design and install Solar PV systems which enable our clients to fulfill their mission in the presence of unreliable or non-existent electrical power. In order to experiment with different Solar PV configurations and train new members, the Solar PV team last year designed a Solar Lab to be installed in and next to Frey 70. This work paralleled the design/component selection typically performed prior to an installation site trip. This year, the team modeled the efforts typically done at the installation site by building and configuring the Solar Lab design. This poster will focus on the lessons learned about decisions that need to be made in the field to convert a Component Selection level design into a Functioning PV System.https://mosaic.messiah.edu/engr2021/1015/thumbnail.jp
On-Campus Solar PV Lab: Component Selection is Only the Beginning
The work of the Solar PV Team is to design and install Solar PV systems which enable our clients to fulfill their mission in the presence of unreliable or non-existent electrical power. In order to experiment with different Solar PV configurations and train new members, the Solar PV team last year designed a Solar Lab to be installed in and next to Frey 70. This work paralleled the design/component selection typically performed prior to an installation site trip. This year, the team modeled the efforts typically done at the installation site by building and configuring the Solar Lab design. This poster will focus on the lessons learned about decisions that need to be made in the field to convert a Component Selection level design into a Functioning PV System.https://mosaic.messiah.edu/engr2021/1003/thumbnail.jp
Associations of military divorce with mental, behavioral, and physical health outcomes
Background
Divorce has been linked with poor physical and mental health outcomes among civilians. Given the unique stressors experienced by U.S. service members, including lengthy and/or multiple deployments, this study aimed to examine the associations of recent divorce on health and military outcomes among a cohort of U.S. service members. Methods
Millennium Cohort participants from the first enrollment panel, married at baseline (2001ā2003), and married or divorced at follow-up (2004ā2006), (Nā=ā29,314). Those divorced were compared to those who remained married for mental, behavioral, physical health, and military outcomes using logistic regression models. Results
Compared to those who remained married, recently divorced participants were significantly more likely to screen positive for new-onset posttraumatic stress disorder, depression, smoking initiation, binge drinking, alcohol-related problems, and experience moderate weight gain. However, they were also more likely be in the highest 15thpercentile of physical functioning, and be able to deploy within the subsequent 3-year period after divorce. Conclusions
Recent divorce among military members was associated with adverse mental health outcomes and risky behaviors, but was also associated with higher odds of subsequent deployment. Attention should be given to those recently divorced regarding mental health and substance abuse treatment and prevention strategies
Binary pattern tile set synthesis is NP-hard
In the field of algorithmic self-assembly, a long-standing unproven
conjecture has been that of the NP-hardness of binary pattern tile set
synthesis (2-PATS). The -PATS problem is that of designing a tile assembly
system with the smallest number of tile types which will self-assemble an input
pattern of colors. Of both theoretical and practical significance, -PATS
has been studied in a series of papers which have shown -PATS to be NP-hard
for , , and then . In this paper, we close the
fundamental conjecture that 2-PATS is NP-hard, concluding this line of study.
While most of our proof relies on standard mathematical proof techniques, one
crucial lemma makes use of a computer-assisted proof, which is a relatively
novel but increasingly utilized paradigm for deriving proofs for complex
mathematical problems. This tool is especially powerful for attacking
combinatorial problems, as exemplified by the proof of the four color theorem
by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and
Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by
Konev and Lisitsa using computer programs. We utilize a massively parallel
algorithm and thus turn an otherwise intractable portion of our proof into a
program which requires approximately a year of computation time, bringing the
use of computer-assisted proofs to a new scale. We fully detail the algorithm
employed by our code, and make the code freely available online
Electron fractionalization induced dephasing in Luttinger liquids
Using the appropriate fractionalization mechanism, we correctly derive the
temperature (T) and interaction dependence of the electron lifetime in
Luttinger liquids. For strong enough interactions, we report that
, with being the standard Luttinger exponent; This
reinforces that electrons are {\it not} good quasiparticles. We immediately
emphasize that this is of importance for the detection of electronic
interferences in ballistic 1D rings and carbon nanotubes, inducing
``dephasing'' (strong reduction of Aharonov-Bohm oscillations).Comment: 5 pages, 1 figure (Final version for PRB Brief Report
- ā¦