42 research outputs found

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    On the actual nature of the anti-ferromagnetism shown by unrestricted calculations on conjugated hydrocarbon rings

    No full text
    Unrestricted Hartree-Fock (UHF) calculations with spin-polarisation, plus Møller-Plesset (MP) perturbative corrections, have been applied to the study of the first four molecules of the family of n-acenes and also to the ground state of cyclobutadiene. The results are similar to those previously obtained for n-periacenes, which describe anti-ferromagnetic spin-polarised electronic structures. The projection to pure spin states gives results that recover the usual description of these molecules, i.e., non spin-polarised ground states. Extended coupled cluster calculations reinforce the projected results, also giving non spin-polarised ground states

    Can model Hamiltonians describe the electron-electron interaction in π-conjugated systems?: PAH and graphene

    No full text
    Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser-Parr-Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree-Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree-Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an 'effective' Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.Financial support by the Spanish 'Ministerio de Ciencia e Innovación MICINN' (grants FIS2009-10325, FIS2009-08744, FIS2012-33521 and FIS2012-35880) and the Universidad de Alicante is gratefully acknowledged. We also acknowledge support from the DGUI of the Comunidad de Madrid under the R&D Program of activities MODELICO-CM/S2009ESP-1691

    Exponential decay of spin-spin correlation between distant defect states produced by contour hydrogenation of polycyclic aromatic hydrocarbon molecules

    Get PDF
    The first few low-lying spin states of alternant polycyclic aromatic hydrocarbon (PAH) molecules of several shapes showing defect states induced by contour hydrogenation have been studied both by ab initio methods and by a precise numerical solution of Pariser-Parr-Pople (PPP) interacting model. In accordance with Lieb's theorem, the ground state shows a spin multiplicity equal to one for balanced molecules, and it gets larger values for imbalanced molecules (that is, when the number of π electrons on both subsets is not equal). Furthermore, we find a systematic decrease of the singlet-triplet splitting as a function of the distance between defects, regardless of whether the ground state is singlet or triplet. For example, a splitting smaller than 0.001 eV is obtained for a medium size C46H28 PAH molecule (di-hydrogenated [11]phenacene) showing a singlet ground state. We conclude that π electrons unbound by lattice defects tend to remain localized and unpaired even when long-range Coulomb interaction is taken into account. Therefore they show a biradical character (polyradical character for more than two defects) and should be studied as two or more local doublets. The implications for electron transport are potentially important since these unpaired electrons can trap traveling electrons or simply flip their spin at a very small energy cost.Financial support by the Spanish MICINN (MAT2011-26534, CTQ2007-65218, CSD2007-6, FIS2009-08744, and CTQ2011-24165) and the Universidad de Alicante; support from the DGUI of the Comunidad de Madrid under the R&D Program of activities MODELICO-CM/S2009ESP-1691

    PPP Hamiltonian for polar polycyclic aromatic hydrocarbons

    No full text
    Total energies of charged states and configurations of different spin multiplicity of two polar non-alternant polycyclic aromatic hdrocarbons (PAH), namely, pentaheptafulvalene and azulene, calculated by means of a Multi-Configurational (MCSCF) method which includes correlation only amongst π orbitals, have been fitted by exact solutions of the Pariser-Parr-Pople (PPP) and the Hubbard Hamiltonians for π electrons. As both molecules are planar, such an approach is in principle feasible. As found in our previous analysis of PAH, PPP fittings are significantly better than those attained with the Hubbard Hamiltonian. In addition, parameters for the Hubbard Hamiltonian are around twice those derived for the PPP model, indicating that parameters are not model independent. Fitted PPP parameters are close to those derived from a similar study of the PAH 2, 5, 8-trihydrogenated phenalene and those originally proposed by Pariser et al. providing further support to a wide applicability of the fitted parameters. Fittings obtained for a MCSCF method that also includes σσ\sigma\sigma and σπ\sigma\pi correlations (MCSCF/MP2) are slightly less accurate giving an on-site repulsion 10–15% smaller. The accuracy of the fittings further diminishes when parameters are derived from energies obtained by means of a DFT method (B3LYP) with an additional decrease in U of 5–25%. In the latter two cases, parameters have to be considered as effective, accounting for effects of σ orbitals not explicitly included in the model Hamiltonians. Electron affinities, ionization energies and dipole moments, calculated by means of the model Hamiltonians, are compared to those derived from DFT and ab initio methods and, whenever available, to experimental data

    Role of potassium orbitals in the metallic behavior of K3 picene

    No full text
    Detailed electronic structure calculations of picene clusters doped by potassium modeling the crystalline K3picene structure show that while two electrons are completely transferred from potassium atoms to the lowest-energy unoccupied molecular orbital of pristine picene, the third one remains closely attached to both material components. Multiconfigurational analysis is necessary to show that many structures of almost degenerate total energies compete to define the cluster ground state. Our results prove that the 4s orbital of potassium should be included in any interaction model describing the material. We propose a quarter-filled two-orbital model as the most simple model capable of describing the electronic structure of K-intercalated picene. Precise solutions obtained by a development of the Lanczos method show low-energy electronic excitations involving orbitals located at different positions. Consequently, metallic transport is possible in spite of the clear dominance of interaction over hopping.Financial support by the Spanish MICINN (MAT2011-26534, CTQ2007-65218, CSD2007-6, FIS2012-33521, FIS2012-35880, and CTQ2011-24165) and the Universidad de Alicante is gratefully acknowledged. We also acknowledge support from the DGUI of the Comunidad de Madrid under the R&D Program of activities MODELICO-CM/S2009ESP-1691
    corecore