2,482 research outputs found

    On the excursions of reflected local time processes and stochastic fluid queues

    Get PDF
    This paper extends previous work by the authors. We consider the local time process of a strong Markov process, add negative drift, and reflect it \`a la Skorokhod. The resulting process is used to model a fluid queue. We derive an expression for the joint law of the duration of an excursion, the maximum value of the process on it, and the time distance between successive excursions. We work with a properly constructed stationary version of the process. Examples are also given in the paper.Comment: 29 pages, 4 figure

    Roughening of Fracture Surfaces: the Role of Plastic Deformations

    Full text link
    Post mortem analysis of fracture surfaces of ductile and brittle materials on the μ\mum-mm and the nm scales respectively, reveal self affine graphs with an anomalous scaling exponent ζ0.8\zeta\approx 0.8. Attempts to use elasticity theory to explain this result failed, yielding exponent ζ0.5\zeta\approx 0.5 up to logarithms. We show that when the cracks propagate via plastic void formations in front of the tip, followed by void coalescence, the voids positions are positively correlated to yield exponents higher than 0.5.Comment: 4 pages, 6 figure

    Analysis of stochastic fluid queues driven by local time processes

    Get PDF
    We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a certain Markov process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is always singular with respect to the Lebesgue measure which in many applications is ``close'' to reality. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a L\'evy process (a subordinator) hence making the theory of L\'evy processes applicable. Another important ingredient in our approach is the Palm calculus coming from the point process point of view.Comment: 32 pages, 6 figure

    Reducing CSF Partial Volume Effects to Enhance Diffusion Tensor Imaging Metrics of Brain Microstructure

    Get PDF
    Technological advances over recent decades now allow for in vivo observation of human brain tissue through the use of neuroimaging methods. While this field originated with techniques capable of capturing macrostructural details of brain anatomy, modern methods such as diffusion tensor imaging (DTI) that are now regularly implemented in research protocols have the ability to characterize brain microstructure. DTI has been used to reveal subtle micro-anatomical abnormalities in the prodromal phase ofº various diseases and also to delineate “normal” age-related changes in brain tissue across the lifespan. Nevertheless, imaging artifact in DTI remains a significant limitation for identifying true neural signatures of disease and brain-behavior relationships. Cerebrospinal fluid (CSF) contamination of brain voxels is a main source of error on DTI scans that causes partial volume effects and reduces the accuracy of tissue characterization. Several methods have been proposed to correct for CSF artifact though many of these methods introduce new limitations that may preclude certain applications. The purpose of this review is to discuss the complexity of signal acquisition as it relates to CSF artifact on DTI scans and review methods of CSF suppression in DTI. We will then discuss a technique that has been recently shown to effectively suppress the CSF signal in DTI data, resulting in fewer errors and improved measurement of brain tissue. This approach and related techniques have the potential to significantly improve our understanding of “normal” brain aging and neuropsychiatric and neurodegenerative diseases. Considerations for next-level applications are discussed

    Travertine precipitation in the Paleoproterozoic Kuetsjärvi Sedimentary Formation, Pechenga Greenstone Belt, NE Fennoscandian Shield

    Get PDF
    PES was supported by Väisälä Foundation (Finnish Academy of Science and Letters) and the Finnish Doctoral Program in Geology. ATB was supported by NERC grant NE/G00398X/1. VAM was supported by NFR grant 191530/V30 (projects 331000 and 802795). This is a contribution (paper) # 18 to the ICDP FAR-DEEP project.Peer reviewedPublisher PD

    Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells

    Get PDF
    Cyclase-associated proteins (CAPs) are highly conserved actin monomer binding proteins present in all eukaryotes. However, the mechanism by which CAPs contribute to actin dynamics has been elusive. In mammals, the situation is further complicated by the presence of two CAP isoforms whose differences have not been characterized. Here, we show that CAP1 is widely expressed in mouse nonmuscle cells, whereas CAP2 is the predominant isoform in developing striated muscles. In cultured NIH3T3 and 1316171 cells, CAP1 is a highly abundant protein that colocalizes with cofilin-1 to dynamic regions of the cortical actin cytoskeleton. Analysis of CAP1 knockdown cells demonstrated that this protein promotes rapid actin filament depolymerization and is important for cell morphology, migration, and endocytosis. Interestingly, depletion of CAP1 leads to an accumulation of cofilin-1 into abnormal cytoplasmic aggregates and to similar cytoskeletal defects to those seen in cofilin-1 knockdown cells, demonstrating that CAP1 is required for proper subcellular localization and function of ADF/cofilin. Together, these data provide the first direct in vivo evidence that CAP promotes rapid actin dynamics in conjunction with ADF/cofilin and is required for several central cellular processes in mammals

    Reducing CSF partial volume effects to enhance diffusion tensor imaging metrics of brain microstructure

    Get PDF
    Technological advances over recent decades now allow for in vivo observation of human brain tissue through the use of neuroimaging methods. While this field originated with techniques capable of capturing macrostructural details of brain anatomy, modern methods such as diffusion tensor imaging (DTI) that are now regularly implemented in research protocols have the ability to characterize brain microstructure. DTI has been used to reveal subtle micro-anatomical abnormalities in the prodromal phase ofº various diseases and also to delineate “normal” age-related changes in brain tissue across the lifespan. Nevertheless, imaging artifact in DTI remains a significant limitation for identifying true neural signatures of disease and brain-behavior relationships. Cerebrospinal fluid (CSF) contamination of brain voxels is a main source of error on DTI scans that causes partial volume effects and reduces the accuracy of tissue characterization. Several methods have been proposed to correct for CSF artifact though many of these methods introduce new limitations that may preclude certain applications. The purpose of this review is to discuss the complexity of signal acquisition as it relates to CSF artifact on DTI scans and review methods of CSF suppression in DTI. We will then discuss a technique that has been recently shown to effectively suppress the CSF signal in DTI data, resulting in fewer errors and improved measurement of brain tissue. This approach and related techniques have the potential to significantly improve our understanding of “normal” brain aging and neuropsychiatric and neurodegenerative diseases. Considerations for next-level applications are discussed

    Topological organization of whole-brain white matter in HIV infection

    Get PDF
    Infection with human immunodeficiency virus (HIV) is associated with neuroimaging alterations. However, little is known about the topological organization of whole-brain networks and the corresponding association with cognition. As such, we examined structural whole-brain white matter connectivity patterns and cognitive performance in 29 HIV+ young adults (mean age = 25.9) with limited or no HIV treatment history. HIV+ participants and demographically similar HIV− controls (n = 16) residing in South Africa underwent magnetic resonance imaging (MRI) and neuropsychological testing. Structural network models were constructed using diffusion MRI-based multifiber tractography and T(1)-weighted MRI-based regional gray matter segmentation. Global network measures included whole-brain structural integration, connection strength, and structural segregation. Cognition was measured using a neuropsychological global deficit score (GDS) as well as individual cognitive domains. Results revealed that HIV+ participants exhibited significant disruptions to whole-brain networks, characterized by weaker structural integration (characteristic path length and efficiency), connection strength, and structural segregation (clustering coefficient) than HIV− controls (p < 0.05). GDSs and performance on learning/recall tasks were negatively correlated with the clustering coefficient (p < 0.05) in HIV+ participants. Results from this study indicate disruption to brain network integrity in treatment-limited HIV+ young adults with corresponding abnormalities in cognitive performance

    Potential trade-offs between nature-based tourism and forestry, a case study in Northern Finland

    Get PDF
    Forestry, as a large industry, has significant impacts on the quality of nature-based tourism landscapes in boreal forests. In Finland, the rapid growth of nature-based tourism has expanded outdoor recreation activities from protected areas into timber production forests; this is particularly so in northern Finland. This paper focuses on assessing balanced local net impacts of three alternative land-use scenarios, in which the level of integration between nature-based tourism (NBT) and traditional forestry is varied. The study is located in northern Finland in the area between two top-rated tourist resorts, Ylläs and Levi. The results of the case study support the idea of an eligible integration between NBT and forestry, which takes into account scenic qualities of forested landscapes by restricting traditional management practices. In our case, the increased number of tourists (due to a more attractive forest environment) offset the losses accrued in forestry (due to restricted forest management)
    corecore