8,365 research outputs found

    Antibiotics in acute bronchitis: a meta-analysis.

    Get PDF
    PurposeMost patients with acute bronchitis who seek medical care are treated with antibiotics, although the effectiveness of this intervention is uncertain. We performed a meta-analysis of randomized, controlled trials to estimate the effectiveness of antibiotics in the treatment of acute bronchitis.Subjects and methodsEnglish-language studies published January 1966 to April 1998 were retrieved using MEDLINE, bibliographies, and consultation with experts. Only randomized trials that enrolled otherwise healthy patients with a diagnosis of acute bronchitis, used an antibiotic in the treatment group and a placebo in the control group, and provided sufficient data to calculate an effect size were included.ResultsWe identified eight randomized controlled trials that satisfied all inclusion criteria. These studies used one of three antibiotics (erythromycin, doxycycline, trimethoprim/sulfamethoxazole). The use of antibiotics decreased the duration of cough and sputum production by approximately one-half day (summary effect size 0.21; 95% CI, 0.05 to 0.36). For specific symptoms, there were nonsignificant trends favoring the use of antibiotics: a decrease of 0.4 days of purulent sputum (95% CI, -0.1 to 0.8), a decrease of 0.5 days of cough (95% CI, -0.1 to 1.1), and a decrease of 0.3 days lost from work (95% CI, -0.6 to 1.1).ConclusionThis meta-analysis suggests a small benefit from the use of the antibiotics erythromycin, doxycycline, or trimethoprim/sulfamethoxazole in the treatment of acute bronchitis in otherwise healthy patients. As this small benefit must be weighed against the risk of side effects and the societal cost of increasing antibiotic resistance, we believe that the use of antibiotics is not justified in these patients

    Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows With Diffusion

    Get PDF
    In this paper we have extended our previous modeling of energy balance in the chromosphere-corona transition region to cases with particle and mass flows. The cases considered here are quasi-steady, and satisfy the momentum and energy balance equations in the transition region. We include in all equations the flow velocity terms and neglect the partial derivatives with respect to time. We present a complete and physically consistent formulation and method for solving the non-LTE and energy balance equations in these situations, including both particle diffusion and flows of H and He. Our results show quantitatively how mass flows affect the ionization and radiative losses of H and He, thereby affecting the structure and extent of the transition region. Also, our computations show that the H and He line profiles are greatly affected by flows. We find that line shifts are much less important than the changes in line intensity and central reversal due to the effects of flows. In this paper we use fixed conditions at the base of the transition region and in the chromosphere because our intent is to show the physical effects of flows and not to match any particular observations. However, we note that the profiles we compute can explain the range of observed high spectral and spatial resolution Lyman alpha profiles from the quiet Sun. We suggest that dedicated modeling of specific sequences of observations based on physically consistent methods like those presented here will substantially improve our understanding of the energy balance in the chromosphere and corona.Comment: 50 pages + 20 figures; submitted to ApJ 9/10/01; a version with higher resolution figures is available at http://cfa-www.harvard.edu/~avrett

    Chemotherapy Side Effects at Home: A Nursing Impact

    Get PDF
    Background: Approximately 32% of all lymphoma patients experience immunocompromised severe avoidable side effects of nadir at home after discharge postchemotherapy. The certified oncology nurses employed at a large metropolitan hospital in Atlanta, Georgia, lack standardized discharge guidelines that include regulatory organizations’ recommendations to assist patients/families with at-home self-management of the avoidable side effects. Purpose: The purpose of this quality improvement project was to utilize the institution’s existing postchemotherapy discharge protocol to assess certified oncology nurses’ knowledge of severe avoidable side effects of nadir; modify the existing healthcare institution’s postchemotherapy discharge protocol to reflect standardized practice for promoting clinical practice continuity by leading organizations; conduct multifaceted training seminars to disseminate the modified postchemotherapy discharge guideline; evaluate the oncology nurses’ knowledge of severe avoidable side effects of nadir postchemotherapy after modified guideline implementation; and collaborate with the intraprofessional team to determine if the modified postchemotherapy discharge guideline was feasible and acceptable for system wide hospital implementation. Theoretical Framework: The theoretical framework used was Benner’s model of nurse proficiency: expert nurses develop skills and understanding of patient care through a sound educational base and a multitude of experiences. Methods: The existing postchemotherapy discharge protocol was used to develop a developed standardized guideline incorporating regulatory organizations’ recommendations for severe avoidable side effects of nadir postchemotherapy for nursing discharge information and patients’ at-home management. Ten oncology registered nurses on a 16-bed oncology unit participated in two 10-question Likert scale questionnaires based on the existing guideline (pretest) and the modified guideline (posttest) before and after an educational intervention. A quantitative nonparametric descriptive design was used. The questionnaires were analyzed with a two-tailed paired t test, p = 0.05, CI = 95, SD = 12. Results: Nurses significantly improved from pretest to posttest—63% before receiving modified guideline education and 83% after receiving education (p \u3c 0.005). Conclusion: A standardized guideline that included regulatory organizations’ recommendations for at-home management of severe avoidable side effects of nadir showed significant nurses’ improvement in knowledge and competency. The effectiveness of nurses disseminating discharge information was paramount when knowledge awareness and appropriate patient/family assessment were incorporated in the discharge instructions

    Kinetic modelling of runaway electron avalanches in tokamak plasmas

    Full text link
    Runaway electrons (REs) can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force due to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate REs mainly through knock-on collisions, where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of REs. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3-D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. A bounce-averaged knock-on source term is derived. The generation of REs from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3-D linearized bounce-averaged relativistic electron Fokker-Planck equation, through the calculation of the response of the electron distribution function to a constant parallel electric field. This work shows that the avalanche effect can be important even in non-disruptive scenarios. RE formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons cannot contribute to the RE population. The relative importance of the avalanche mechanism is investigated as a function of the key parameters for RE formation; the plasma temperature and the electric field strength. In agreement with theoretical predictions, the simulations show that in low temperature and E-field knock-on collisions are the dominant source of REs and can play a significant role for RE generation, including in non-disruptive scenarios.Comment: 23 pages, 12 figure

    Configurational entropy of Wigner crystals

    Get PDF
    We present a theoretical study of classical Wigner crystals in two- and three-dimensional isotropic parabolic traps aiming at understanding and quantifying the configurational uncertainty due to the presence of multiple stable configurations. Strongly interacting systems of classical charged particles confined in traps are known to form regular structures. The number of distinct arrangements grows very rapidly with the number of particles, many of these arrangements have quite low occurrence probabilities and often the lowest-energy structure is not the most probable one. We perform numerical simulations on systems containing up to 100 particles interacting through Coulomb and Yukawa forces, and show that the total number of metastable configurations is not a well defined and representative quantity. Instead, we propose to rely on the configurational entropy as a robust and objective measure of uncertainty. The configurational entropy can be understood as the logarithm of the effective number of states; it is insensitive to the presence of overlooked low-probability states and can be reliably determined even within a limited time of a simulation or an experiment.Comment: 12 pages, 8 figures. This is an author-created, un-copyedited version of an article accepted for publication in J. Phys.: Condens. Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version is available online at 10.1088/0953-8984/23/7/075302.

    Ground State and Tkachenko Modes of a Rapidly Rotating Bose-Einstein Condensate in the Lowest Landau Level State

    Full text link
    The Letter considers the ground state and the Tkachenko modes for a rapidly rotating Bose-Einstein condensate (BEC), when its macroscopic wave function is a coherent superposition of states analogous to the lowest Landau levels of a charge in a magnetic field. As well as in type II superconductors close to the critical magnetic field Hc2H_{c2}, this corresponds to a periodic vortex lattice. The exact value of the shear elastic modulus of the vortex lattice, which was known from the old works on type II superconductors, essentially exceeds the values calculated recently for BEC. This is important for comparison with observation of the Tkachenko mode in the rapidly rotating BEC.Comment: 5 pages, 1 figure; discussion edited, references added, numerical factors and typos correcte

    Josephson junctions in thin and narrow rectangular superconducting strips

    Full text link
    I consider a Josephson junction crossing the middle of a thin rectangular superconducting strip of length L and width W subjected to a perpendicular magnetic induction B. I calculate the spatial dependence of the gauge-invariant phase difference across the junction and the resulting B dependence of the critical current Ic(B).Comment: 4 pages, 6 figures, revised following referee's comment

    Clostridium difficile infection in the United States: A national study assessing preventive practices used and perceptions of practice evidence

    Get PDF
    We surveyed 571 US hospitals about practices used to prevent Clostridium difficile infection (CDI). Most hospitals reported regularly using key CDI prevention practices, and perceived their strength of evidence as high. The largest discrepancy between regular use and perceived evidence strength occurred with antimicrobial stewardship programs.Infect. Control Hosp. Epidemiol. 2015;36(8):969–971</jats:p
    • …
    corecore