903 research outputs found

    Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research

    Get PDF
    Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied

    High‐Temperature Deformation Behavior of Synthetic Polycrystalline Magnetite

    Get PDF
    Post-print (lokagerð höfundar)We performed a series of deformation experiments on synthetic magnetite aggregates to characterize the high‐temperature rheological behavior of this mineral under nominally dry and hydrous conditions. Grain growth laws for magnetite were additionally determined from a series of static annealing tests. Synthetic magnetite aggregates were formed by hot isostatic pressing of fine‐grained magnetite powder at 1,100 °C temperature and 300‐MPa confining pressure for 20 hr, resulting in polycrystalline material with a mean grain size around 40 μm and containing 2–4% porosity. Samples were subsequently deformed to axial strains of up to 10% under constant load conditions at temperatures between 900 and 1,150 °C in a triaxial deformation apparatus under 300‐MPa confining pressure at applied stresses in the range of 8–385 MPa or in a uniaxial creep rig at atmospheric pressure with stresses of 1–15 MPa. The aggregates exhibit typical power‐law creep behavior with a mean stress exponent of 3 at high stresses, indicating a dislocation creep mechanism and a transition to near‐Newtonian creep with a mean stress exponent of 1.1 at lower stresses. The presence of water in the magnetite samples resulted in significantly enhanced static grain growth and strain rates. Best‐fit flow laws to the data indicate activation energies of around 460 and 310 kJ/mol for dislocation and diffusion creep of nominally dry magnetite, respectively. Based on the experimentally determined flow laws, magnetite is predicted to be weaker than most major silicate phases in relatively dry rocks such as oceanic gabbros during high‐temperature crustal deformation.Alexander von Humboldt-Stiftun

    Local texture measurements with high-energy synchrotron radiation on NiAl deformed in torsion

    Get PDF
    Plastic deformation leads to crystallographic preferred orientations (texture) of the grains in a polycrystalline sample. Therefore, the study of these textures gives informations about the slip systems activated during the deformation. In this study the deformation of polycrystalline NiAl was done by torsion under confining pressure leading to crack-free samples with a well-defined strain gradient. NiAl, an ordered intermetallic alloy with B2 structure, is a potential material candidate for high-temperature applications. Polycrystalline NiAl cylindrical samples with two different initial textures were deformed in torsion tests at 1000 K and 1273 K, respectively, in a Paterson-type rock deformation machine [1] under 400 MPa argon confining pressure. The diameter and height of the samples were 10 mm. The applied torsion leads to a simple shear in the tangential direction in a plane normal to the torsion axis. The shear strain and the shear strain rate in the samples increase linearly from zero at the torsion axis to a maximum ( ) at the sample edge. To investigate the local textures between the torsion axis and the edge, small pins with a diameter of 1 mm were prepared in the radial direction for each of the four deformed samples Quantitative texture measurements were performed with high-energy (100 keV) synchrotron radiation at the beamline BW5 [2], The incident monochromatic beam was defined by a slit system to 1 mm x 2 mm. The small pins were mounted in the Eulerian cradle parallel to the rotation axis ω. An image plate detector was positioned perpendicularly to the diffracted beam at a distance from the sample of about 1.3 m. Thus, the Debye-Scherrer rings with the indices (100), The texture was measured as a function of the shear strain at five different positions between γ = 0 and 3. The samples deformed at 1273 K showed a poor grain statistics due to a large grain size. The corresponding pole figures are not shown here. The torsion deformation at 1000 K leads to much smaller grains. The corresponding (100) pole figures are shown for γ = 1.5; 2.3 and 3 and two different initial texture

    Thermal-elastic stresses and the criticality of the continental crust

    Get PDF
    Heating or cooling can lead to high stresses in rocks due to the different thermal-elastic properties of minerals. In the upper 4 km of the crust, such internal stresses might cause fracturing. Yet it is unclear if thermal elasticity contributes significantly to critical stresses and failure deeper in Earth's continental crust, where ductile creep causes stress relaxation. We combined a heating experiment conducted in a Synchrotron microtomograph (Advanced Photon Source, USA) with numerical simulations to calculate the grain-scale stress field in granite generated by slow burial. We find that deviatoric stresses >100 MPa can be stored during burial, with relaxation times from 100's to 1000's ka, even in the ductile crust. Hence, grain-scale thermal-elastic stresses may serve as nuclei for instabilities, thus rendering the continental crust close to criticality

    Earthquake nucleation in the lower crust by local stress amplification

    Get PDF
    Deep intracontinental earthquakes are poorly understood, despite their potential to cause significant destruction. Although lower crustal strength is currently a topic of debate, dry lower continental crust may be strong under high-grade conditions. Such strength could enable earthquake slip at high differential stress within a predominantly viscous regime, but requires further documentation in nature. Here, we analyse geological observations of seismic structures in exhumed lower crustal rocks. A granulite facies shear zone network dissects an anorthosite intrusion in Lofoten, northern Norway, and separates relatively undeformed, microcracked blocks of anorthosite. In these blocks, pristine pseudotachylytes decorate fault sets that link adjacent or intersecting shear zones. These fossil seismogenic faults are rarely >15 m in length, yet record single-event displacements of tens of centimetres, a slip/length ratio that implies >1 GPa stress drops. These pseudotachylytes represent direct identification of earthquake nucleation as a transient consequence of ongoing, localised aseismic creep

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions
    corecore