2,381 research outputs found

    Correlation of Static Stress Changes and Earthquake Occurrence in

    Get PDF
    A systematic analysis is made of static Coulomb stress changes and earthquake occurrence in the area of the North Aegean Sea, Greece, in order to assess the prospect of using static stress changes to construct a regional earthquake likelihood model. The earthquake data set comprises all events of magnitude M ≄ 5.2 which have occurred since 1964. This is compared to the evolving stress field due to constant tectonic loading and perturbations due to coseismic slip associated with major earthquakes (M ≄ 6.4) over the same period. The stress was resolved for sixteen fault orientation classes, covering the observed focal mechanisms of all earthquakes in the region. Analysis using error diagrams shows that earthquake occurrence is better correlated with the constant tectonic loading component of the stress field than with the total stress field changes since 1964, and that little, if any, information on earthquake occurrence is lost if only the maximum of the tectonic loading over the fault orientation classes is considered. Moreover, the information on earthquake occurrence is actually increased by taking the maximum of the evolving stress field since 1964, and of its coseismic–slip component, over the fault orientation classes. The maximum, over fault orientation classes, of linear combinations of the tectonic loading and the evolving stress field is insignificantly better correlated with earthquake occurrence than the maximum of the tectonic loading by itself. A composite stress–change variable is constructed from ordering of the maximum tectonic loading component and the maximum coseismic–slip component, in order to optimize the correlation with earthquake occurrence. The results indicate that it would be difficult to construct a time–varying earthquake likelihood model from the evolving stress field that is more informative than a time–invariant model based on the constant tectonic loading

    Asymptotic Normalization Coefficients for 13C+p->14N

    Get PDF
    The 13C(14N,13C)14N^{13}C(^{14}N,^{13}C)^{14}N proton exchange reaction has been measured at an incident energy of 162 MeV. Angular distributions were obtained for proton transfer to the ground and low lying excited states in 14N^{14}N. Elastic scattering of 14N^{14}N on 13C^{13}C also was measured out to the rainbow angle region in order to find reliable optical model potentials. Asymptotic normalization coefficients for the system 13C+p→14N^{13}C+p\to {}^{14}N have been found for the ground state and the excited states at 2.313, 3.948, 5.106 and 5.834 MeV in 14N^{14}N. These asymptotic normalization coefficients will be used in a determination of the S-factor for 7Be(p,γ)8B^{7}Be(p,\gamma)^{8}B at solar energies from a measurement of the proton transfer reaction 14N(7Be,8B)13C^{14}N(^{7}Be,^{8}B)^{13}C.Comment: 5 pages, 6 figure

    Expanding the parameters of academia

    Get PDF
    This paper draws on qualitative data gathered from two studies funded by the UK Leadership Foundation for Higher Education to examine the expansion of academic identities in higher education. It builds on Whitchurch’s earlier work, which focused primarily on professional staff, to suggest that the emergence of broadly based projects such as widening participation, learning support and community partnership is also impacting on academic identities. Thus, academic as well as professional staff are increasingly likely to work in multi-professional teams across a variety of constituencies, as well as with external partners, and the binary distinction between ‘academic’ and ‘non-academic’ roles and activities is no longer clear-cut. Moreover, there is evidence from the studies of an intentionality about deviations from mainstream academic career routes among respondents who could have gone either way. Consideration is therefore given to factors that influence individuals to work in more project-oriented areas, as well as to variables that affect ways in which these roles and identities develop. Finally, three models of academically oriented project activity are identified, and the implications of an expansion of academic identities are reviewed

    Tests of Transfer Reaction Determinations of Astrophysical S-Factors

    Get PDF
    The 16O(3He,d)17F{}^{16}O ({}^{3}He,d) {}^{17}F reaction has been used to determine asymptotic normalization coefficients for transitions to the ground and first excited states of 17F{}^{17}F. The coefficients provide the normalization for the tails of the overlap functions for 17F→16O+p{}^{17}F \to{}^{16}O + p and allow us to calculate the S-factors for 16O(p,γ)17F{}^{16}O (p,\gamma){}^{17}F at astrophysical energies. The calculated S-factors are compared to measurements and found to be in very good agreement. This provides the first test of this indirect method to determine astrophysical direct capture rates using transfer reactions. In addition, our results yield S(0) for capture to the ground and first excited states in 17F^{17}F, without the uncertainty associated with extrapolation from higher energies.Comment: 6 pages, 2 figure

    Weighing Super-Massive Black Holes with Narrow Fe Kα\alpha Line

    Full text link
    It has been suggested that the narrow cores of the Fe Kα\alpha emission lines in Active Galactic Nuclei (AGNs) are likely produced in the torus, the inner radius of which can be measured by observing the lag time between the VV and KK band flux variations. In this paper we compare the virial products of the infrared time lags and the narrow Fe Kα\alpha widths for 10 type 1 AGNs with the black hole masses from other techniques. We find the narrow Fe Kα\alpha line width is in average 2.6−0.4+0.9^{+0.9}_{-0.4} times broader than expected assuming an isotropic velocity distribution of the torus at the distance measured by the infrared lags. We propose the thick disk model of the torus could explain the observed larger line width. Another possibility is the contamination by emission from the broad line region or the outer accretion disk. Alternatively, the narrow iron line might originate from the inner most part of the obscuring torus within the sublimation radius, while the infrared emission from outer cooler part. We note the correlation between the black hole masses based on this new technique and those based on other known techniques is statistically insignificant. We argue that this could be attributed to the small sample size and the very large uncertainties in the measurements of iron K line widths. The next generation of X-ray observatories could help verify the origin of the narrow iron Kα\alpha line and the reliability of this new technique.Comment: 12 pages, 2 figures, 2 tables, Science China G, in pres

    Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/A

    Get PDF
    We present the results of a search for optical model potentials for use in the description of elastic scattering and transfer reactions involving stable and radioactive p-shell nuclei. This was done in connection with our program to use transfer reactions to obtain data for nuclear astrophysics, in particular for the determination of the astrophysical S_17 factor for 7Be(p,\gamma)8B using two (7Be,8B) proton transfer reactions. Elastic scattering was measured using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted and are compared with potentials obtained from a microscopic double folding model. We use these results to find optical model potentials for unstable nuclei with emphasis on the reliability of the description they provide for peripheral proton transfer reactions. We discuss the uncertainty introduced by the procedure in the prediction of the DWBA cross sections for the (7Be,8B) reactions used in extracting the astrophysical factor S_17(0).Comment: 16 pages, LaTEX file, 9 figures (PostScript files

    Residence Time Statistics for Normal and Fractional Diffusion in a Force Field

    Full text link
    We investigate statistics of occupation times for an over-damped Brownian particle in an external force field. A backward Fokker-Planck equation introduced by Majumdar and Comtet describing the distribution of occupation times is solved. The solution gives a general relation between occupation time statistics and probability currents which are found from solutions of the corresponding problem of first passage time. This general relationship between occupation times and first passage times, is valid for normal Markovian diffusion and for non-Markovian sub-diffusion, the latter modeled using the fractional Fokker-Planck equation. For binding potential fields we find in the long time limit ergodic behavior for normal diffusion, while for the fractional framework weak ergodicity breaking is found, in agreement with previous results of Bel and Barkai on the continuous time random walk on a lattice. For non-binding potential rich physical behaviors are obtained, and classification of occupation time statistics is made possible according to whether or not the underlying random walk is recurrent and the averaged first return time to the origin is finite. Our work establishes a link between fractional calculus and ergodicity breaking.Comment: 12 page

    Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer

    Get PDF
    A microfluidic mixer is applied to study the kinetics of calmodulin conformational changes upon Ca2+ binding. The device facilitates rapid, uniform mixing by decoupling hydrodynamic focusing from diffusive mixing and accesses time scales of tens of microseconds. The mixer is used in conjunction with multiphoton microscopy to examine the fast Ca2+-induced transitions of acrylodan-labeled calmodulin. We find that the kinetic rates of the conformational changes in two homologous globular domains differ by more than an order of magnitude. The characteristic time constants are ≈490 ÎŒs for the transitions in the C-terminal domain and ≈20 ms for those in the N-terminal domain of the protein. We discuss possible mechanisms for the two distinct events and the biological role of the stable intermediate, half-saturated calmodulin

    A new algorithm for anisotropic solutions

    Full text link
    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.Comment: 16 pages, to appear in Pramana - J. Phy
    • 

    corecore