79 research outputs found
Self-similar chain conformations in polymer gels
We use molecular dynamics simulations to study the swelling of randomly
end-cross-linked polymer networks in good solvent conditions. We find that the
equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand
lengths N_s exceeding the melt entanglement length N_e. The internal structure
of the network strands in the swollen state is characterized by a new exponent
nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which
predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory
argument for a self-similar structure of mutually interpenetrating network
strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner
theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand
length.Comment: 4 pages, RevTex, 3 Figure
Tube Models for Rubber-Elastic Systems
In the first part of the paper we show that the constraining potentials
introduced to mimic entanglement effects in Edwards' tube model and Flory's
constrained junction model are diagonal in the generalized Rouse modes of the
corresponding phantom network. As a consequence, both models can formally be
solved exactly for arbitrary connectivity using the recently introduced
constrained mode model. In the second part, we solve a double tube model for
the confinement of long paths in polymer networks which is partially due to
crosslinking and partially due to entanglements. Our model describes a
non-trivial crossover between the Warner-Edwards and the Heinrich-Straube tube
models. We present results for the macroscopic elastic properties as well as
for the microscopic deformations including structure factors.Comment: 15 pages, 8 figures, Macromolecules in pres
Kinetic models with randomly perturbed binary collisions
We introduce a class of Kac-like kinetic equations on the real line, with
general random collisional rules, which include as particular cases models for
wealth redistribution in an agent-based market or models for granular gases
with a background heat bath. Conditions on these collisional rules which
guarantee both the existence and uniqueness of equilibrium profiles and their
main properties are found. We show that the characterization of these
stationary solutions is of independent interest, since the same profiles are
shown to be solutions of different evolution problems, both in the econophysics
context and in the kinetic theory of rarefied gases
Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.
Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD
Genome-wide genotyping demonstrates a polygenic risk score associated with white matter hyperintensity volume in CADASIL
Background and Purpose—White matter hyperintensities (WMH) on MRI are a quantitative marker for sporadic cerebral small vessel disease and are highly heritable. To date, large-scale genetic studies have identified only a single locus influencing WMH burden. This might in part relate to biological heterogeneity of sporadic WMH. The current study searched for genetic modifiers of WMH volume in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a monogenic small vessel disease.
Methods—We performed a genome-wide association study to identify quantitative trait loci for WMH volume by combining data from 517 CADASIL patients collected through 7 centers across Europe. WMH volumes were centrally analyzed and quantified on fluid attenuated inversion recovery images. Genotyping was performed using the Affymetrix 6.0 platform. Individuals were assigned to 2 distinct genetic clusters (cluster 1 and cluster 2) based on their genetic background.
Results—Four hundred sixty-six patients entered the final genome-wide association study analysis. The phenotypic variance of WMH burden in CADASIL explained by all single nucleotide polymorphisms in cluster 1 was 0.85 (SE=0.21), suggesting a substantial genetic contribution. Using cluster 1 as derivation and cluster 2 as a validation sample, a polygenic score was significantly associated with WMH burden (P=0.001) after correction for age, sex, and vascular risk factors. No single nucleotide polymorphism reached genome-wide significance.
Conclusions—We found a polygenic score to be associated with WMH volume in CADASIL subjects. Our findings suggest that multiple variants with small effects influence WMH burden in CADASIL. The identification of these variants and the biological pathways involved will provide insights into the pathophysiology of white matter disease in CADASIL and possibly small vessel disease in general
ADC Histograms from Routine DWI for Longitudinal Studies in Cerebral Small Vessel Disease: A Field Study in CADASIL.
Diffusion tensor imaging (DTI) histogram metrics are correlated with clinical parameters in cerebral small vessel diseases (cSVD). Whether ADC histogram parameters derived from simple diffusion weighted imaging (DWI) can provide relevant markers for long term studies of cSVD remains unknown. CADASIL patients were evaluated by DWI and DTI in a large cohort study overa6-year period. ADC histogram parameters were compared to those derived from mean diffusivity (MD) histograms in 280 patients using intra-class correlation and Bland-Altman plots. Impact of image corrections applied to ADC maps was assessed and a mixed effect model was used for analyzing the effects of scanner upgrades. The results showed that ADC histogram parameters are strongly correlated to MD histogram parameters and that image corrections have only limited influence on these results. Unexpectedly, scanner upgrades were found to have major effects on diffusion measures with DWI or DTI that can be even larger than those related to patients' characteristics. These data support that ADC histograms from daily used DWI can provide relevant parameters for assessing cSVD, but the variability related to scanner upgrades as regularly performed in clinical centers should be determined precisely for longitudinal and multicentric studies using diffusion MRI in cSVD
Amyloid pathology and vascular risk are associated with distinct patterns of cerebral white matter hyperintensities:A multicenter study in 3132 memory clinic patients
INTRODUCTION: White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-β1-42 (Aβ42)-positive status. METHODS: Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume.RESULTS: VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p < 0.001), external capsule (B = 0.052, p < 0.001), and middle cerebellar peduncle (B = 0.067, p < 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p < 0.001) and splenium (B = 0.103, p < 0.001). DISCUSSION: Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. Highlights: Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aβ42 status in 11 memory clinic cohorts. Aβ42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.</p
Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts
Introduction: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as unusual, but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. Methods: Individual participant data (N = 3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. Results: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. Discussion: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered
- …