4,508 research outputs found

    Dynamical detection of three triple stellar systems in open clusters

    Get PDF
    We present a kinematic analysis of three triple stellar systems belonging to two open clusters: CPD-60{\deg}961 and HD66137 in NGC2516, and HD315031 in NGC6530. All three systems are hierarchical triples with a close binary bound to a third body in a wider orbit, whose presence is detected through velocity variations of the close binary barycentre. Orbital parameters are derived from radial velocity curves. Absolute parameters for all stars are estimated assuming cluster membership. Some dynamical and evolutionary aspects of these systems are discussed, particularly the possible influence of Kozai cycles. The two systems of NGC2516 have similar orbital configurations with inner periods of 11.23 d and 8.70 d and outer periods of 9.79 yr and 9.24 yr. We report also radial velocity measurements of the components of the visual binary CPD-60{\deg}944 in NGC2516. Including results from previous works, this cluster would harbor 5 hierarchical triples. The young system HD315031 has an inner binary with a period of 1.37 d and a very eccentric (e=0.85) outer orbit with a period of 483 d. Possible dynamical evolutionary scenarios are discussed. Long-term radial velocity monitoring is highlighted as strategy for the detection of subsystems with intermediate separations, which are hard to cover with normal spectroscopic studies or visual techniques.Comment: 9 pages, 5 figures. Accepted by Monthly Notices of the Royal Astronomical Societ

    A revised comparison of distant and nearby solar twins

    Full text link
    Properties of solar twins reported by Lehmann et al. (2023) at kiloparsec distances from the local standard of rest (LSR) are compared to solar twins within 100 pc of the Sun. These have velocity distributions closely similar to those of the nearby twins in addition to closely matching TeffT_{\rm eff}, log(g)\log{(g)} and [Fe/H][Fe/H]. The new twins are at slightly higher galactic latitudes, and are somewhat closer to the Galactic center. Additionally, they may be significantly older than nearby solar twins.Comment: Revised and updated version of 2023 RNAAS 7, 8

    The interaction between transpolar arcs and cusp spots

    Get PDF
    Transpolar arcs and cusp spots are both auroral phenomena which occur when the interplanetary magnetic field is northward. Transpolar arcs are associated with magnetic reconnection in the magnetotail, which closes magnetic flux and results in a "wedge" of closed flux which remains trapped, embedded in the magnetotail lobe. The cusp spot is an indicator of lobe reconnection at the high-latitude magnetopause; in its simplest case, lobe reconnection redistributes open flux without resulting in any net change in the open flux content of the magnetosphere. We present observations of the two phenomena interacting--i.e., a transpolar arc intersecting a cusp spot during part of its lifetime. The significance of this observation is that lobe reconnection can have the effect of opening closed magnetotail flux. We argue that such events should not be rare

    The Masses Of The B-Stars In The High Galactic Latitude Eclipsing Binary IT Lib

    Full text link
    A number of blue stars which appear to be similar to Population I B-stars in the star forming regions of the galactic disk are found more than 1 kpc from the galactic plane. Uncertainties about the true distances and masses of these high latitude B-stars has fueled a debate as to their origin and evolutionary status. The eclipsing binary IT Lib is composed of two B-stars, is approximately one kiloparsec above the galactic plane, and is moving back toward the plane. Observations of the light and velocity curves presented here lead to the conclusion that the B-stars in this system are massive young main-sequence stars. While there are several possible explanations, it appears most plausible that the IT Lib system formed in the disk about 30 million years ago and was ejected on a trajectory taking it to its present position.Comment: 26 pages, 3 figures, accepted for publication in the PASP (January 2003

    Two-dimensional solitons on the surface of magnetic fluids

    Get PDF
    We report an observation of a stable soliton-like structure on the surface of a ferrofluid, generated by a local perturbation in the hysteretic regime of the Rosensweig instability. Unlike other pattern-forming systems with localized 2D structures, magnetic fluids are characterized by energy conservation; hence their mechanism of soliton stabilization is different from the previously discussed gain/loss balance mechanism. The radioscopic measurements of the soliton's surface profile suggest that locking on the underlying periodic structure is instrumental in its stabilization.Comment: accepted for publication by Physical Review Letter

    Static Response Function for Longitudinal and Transverse Excitations in Superfluid Helium

    Full text link
    The sum rule formalism is used to evaluate rigorous bounds for the density and current static response functions in superfluid helium at zero temperature. Both lower and upper bounds are considered. The bounds are expressed in terms of ground state properties (density and current correlation funtions) and of the interatomic potential. The results for the density static response significantly improve the Feynman approximation and turn out to be close to the experimental (neutron scattering) data. A quantitative prediction for the transverse current response is given. The role of one-phonon and multi-particle excitations in the longitudinal and transverse channels is discussed. (Phys.Rev.B, in press)Comment: 19 pages (plain TeX) and 3 Figures (postscript), UTF-26

    Relevance of pseudospin symmetry in proton-nucleus scattering

    Full text link
    The manifestation of pseudospin-symmetry in proton-nucleus scattering is discussed. Constraints on the pseudospin-symmetry violating scattering amplitude are given which require as input cross section and polarization data, but no measurements of the spin rotation function. Application of these constraints to p-58Ni and p-208Pb scattering data in the laboratory energy range of 200 MeV to 800 MeV, reveals a significant violation of the symmetry at lower energies and a weak one at higher energies. Using a schematic model within the Dirac phenomenology, the role of the Coulomb potential in proton-nucleus scattering with regard to pseudospin symmetry is studied. Our results indicate that the existence of pseudospin-symmetry in proton-nucleus scattering is questionable in the whole energy region considered and that the violation of this symmetry stems from the long range nature of the Coulomb interaction.Comment: 22 pages including 9 figures, correction of 1 reference, revision of abstract and major modification of chapter 4, Fig. 6, and Fig. 7; addition of Fig. 8 and Fig.

    Epitaxial Growth of Thin Films -- a Statistical Mechanical Model

    Full text link
    A theoretical framework is developed to describe experiments on the structure of epitaxial thin films, particularly niobium on sapphire. We extend the hypothesis of dynamical scaling to apply to the structure of thin films from its conventional application to simple surfaces. We then present a phenomenological continuum theory that provides a good description of the observed scattering and the measured exponents. Finally the results of experiment and theory are compared.Comment: 10 pages, 3 figures, minor revisions. accepted for publication in J Phys Condense Matte

    Optical Conductivity in a Two-Band Superconductor: Pb

    Full text link
    We demonstrate the effect of bandstructure on the superconducting properties of Pb by calculating the strong-coupling features in the optical conductivity, σ(ω)\sigma(\omega), due to the electron-phonon interaction. The importance of momentum dependence in the calculation of the properties of superconductors has previously been raised for MgB2_2. Pb resembles MgB2_2 in that it is a two band superconductor in which the bands' contributions to the Fermi surface have very different topologies. We calculate σ(ω)\sigma(\omega) by calculating a memory function which has been recently used to analyze σ(ω)\sigma(\omega) of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. In our calculations the two components of the Fermi surface are described by parameterizations of de Haas--van Alphen data. We use a phonon spectrum which is a fit to neutron scattering data. By including the momentum dependence of the Fermi surface good agreement is found with the experimentally determined strong-coupling features which can be described by a broad peak at around 4.5 meV and a narrower higher peak around 8 meV of equal height. The calculated features are found to be dominated by scattering between states within the third band. By contrast scattering between states in the second band leads to strong-coupling features in which the height of the high energy peak is reduced by 50\sim 50% compared to that of the low energy peak. This result is similar to that in the conventional isotropic (momentum independent) treatment of superconductivity. Our results show that it is important to use realistic models of the bandstructure and phonons, and to avoid using momentum averaged quantities, in calculations in order to get quantitatively accurate results
    corecore