43 research outputs found

    Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and -2 in different phases of bronchopulmonary dysplasia

    Get PDF
    Bronchopulmonary dysplasia (BPD) can evolve in prematurely born infants who require mechanical ventilation because of hyaline membrane disease (HMD). The development of BPD can be divided in an acute, a regenerative, a transitional, and a chronic phase. During these different phases, extensive remodeling of the lung parenchyma with re-epithelialization of the alveoli and formation of fibrosis occurs. Matrix metalloproteinase-1 (MMP-1) is an enzyme that is involved in re-epithelialization processes, and dysregulation of MMP-1 activity contributes to fibrosis. Localization of MMP-1 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were investigated in lung tissue obtained from infants who died during different phases of BPD development. In all studied cases (n = 50) type-II pneumocytes were found to be immunoreactive for MMP-1, TIMP-1, and TIMP-2. During the acute and regenerative phase of BPD, type-II pneumocytes re-epithelialize the injured alveoli. This may suggest that MMP-1 and its inhibitors, expressed by type-II pneumocytes, play a role in the re-epithelialization process after acute lung injury. Although MMP-1 staining intensity remained constant in type-II pneumocytes during BPD development, TIMP-1 increased during the chronic fibrotic phase. This relative elevation of TIMP-1 compared with MMP-1 is indicative for reduced collagenolytic activity by type-II pneumocytes in chronic BPD and may contribute to fibrosis. Fibrotic foci in chronic BPD contained fibroblasts immunoreactive for MMP-1 and TIMP-1 and -2. This may indicate that decreased collagen turnover by fibroblasts contributes to fibrosis in BPD development

    Matrix-Bound PAI-1 Supports Cell Blebbing via RhoA/ROCK1 Signaling

    Get PDF
    The microenvironment of a tumor can influence both the morphology and the behavior of cancer cells which, in turn, can rapidly adapt to environmental changes. Increasing evidence points to the involvement of amoeboid cell migration and thus of cell blebbing in the metastatic process; however, the cues that promote amoeboid cell behavior in physiological and pathological conditions have not yet been clearly identified. Plasminogen Activator Inhibitor type-1 (PAI-1) is found in high amount in the microenvironment of aggressive tumors and is considered as an independent marker of bad prognosis. Here we show by immunoblotting, activity assay and immunofluorescence that, in SW620 human colorectal cancer cells, matrix-associated PAI-1 plays a role in the cell behavior needed for amoeboid migration by maintaining cell blebbing, localizing PDK1 and ROCK1 at the cell membrane and maintaining the RhoA/ROCK1/MLC-P pathway activation. The results obtained by modeling PAI-1 deposition around tumors indicate that matrix-bound PAI-1 is heterogeneously distributed at the tumor periphery and that, at certain spots, the elevated concentrations of matrix-bound PAI-1 needed for cancer cells to undergo the mesenchymal-amoeboid transition can be observed. Matrix-bound PAI-1, as a matricellular protein, could thus represent one of the physiopathological requirements to support metastatic formation

    PAI-1 and functional blockade of SNAI1 in breast cancer cell migration

    Get PDF
    12 pages, 5 figures.-- PMID: 19055748 [PubMed].-- et al.[Introduction]: Snail, a family of transcriptional repressors implicated in cell movement, has been correlated with tumour invasion. The Plasminogen Activation (PA) system, including urokinase plasminogen activator (uPA), its receptor and its inhibitor, plasminogen activator inhibitor type 1(PAI-1), also plays a key role in cancer invasion and metastasis, either through proteolytic degradation or by non-proteolytic modulation of cell adhesion and migration. Thus, Snail and the PA system are both over-expressed in cancer and influence this process. In this study we aimed to determine if the activity of SNAI1 (a member of the Snail family) is correlated with expression of the PA system components and how this correlation can influence tumoural cell migration.[Methods]: We compared the invasive breast cancer cell-line MDA-MB-231 expressing SNAI1 (MDA-mock) with its derived clone expressing a dominant-negative form of SNAI1 (SNAI1-DN). Expression of PA system mRNAs was analysed by cDNA microarrays and real-time quantitative RT-PCR. Wound healing assays were used to determine cell migration. PAI-1 distribution was assessed by immunostaining.[Results]: We demonstrated by both cDNA microarrays and realtime quantitative RT-PCR that the functional blockade of SNAI1 induces a significant decrease of PAI-1 and uPA transcripts. After performing an in vitro wound-healing assay, we observed that SNAI1-DN cells migrate more slowly than MDA-mock cells and in a more collective manner. The blockade of SNAI1 activity resulted in the redistribution of PAI-1 in SNAI1-DN cells decorating large lamellipodia, which are commonly found structures in these cells.[Conclusions]: In the absence of functional SNAI1, the expression of PAI-1 transcripts is decreased, although the protein is redistributed at the leading edge of migrating cells in a manner comparable with that seen in normal epithelial cells.This work was supported by the CNRS ACI Program "Complexité du vivant" (grant # 050009DR11) and by the Evry Genopole grant "Aide à l'acquisition d'équipement semi-lourd" 2007 and 2008.Peer reviewe

    Tensegrity behavior of cortical and cytosolic cytoskeletal components in twisted living adherent cells

    No full text
    International audienc

    Nouveaux travaux pratiques en nanotechnologies : étude nano-mécanique de micro/nano-objets mous/souples par AFM

    No full text
    La caractérisation des propriétés mécaniques de micro et nano-systèmes devient cruciale pour le développement des (bio)MEMS/NEMS. Comme la microscopie à force atomique (AFM) est un instrument de choix pour mesurer les propriétés morphologiques et mécaniques à l’échelle submicronique, nous avons développé un TP AFM en mode Peak Force sur cette thématique. Les étudiants effectueront la cartographie 4D d’un échantillon de polymères dont les propriétés mécaniques sont bien différentes. À partir de ces cartographies AFM, les étudiants estimeront les modules de Young en sélectionnant le(s) modèle(s) les plus adéquats. Le savoir-faire ainsi acquis sera ensuite appliqué lors d’un second TP à une cellule de souris fixée pour estimer ses propriétés viscoélastiques

    Integrin-mediated adhesion as self-sustained waves of enzymatic activation

    No full text
    International audienc

    Formation en Nanosciences et Nanotechnologies : Un pas vers une «vraie » interdisciplinarité

    No full text
    En 2011, l’Université Joseph Fourier (UJF), s'appuyant sur la force de la recherche interdisciplinaire des laboratoires grenoblois dans les Nanosciences et Nanotechnologies, a ouvert deux majeures : un M1 « Physique fondamentale et Nanosciences » et un M1 « Chimie et Nanosciences ». Dans ce cadre, des Travaux Pratiques interdisciplinaires et interplateformes ont été mis en place afin d’illustrer de manière concrète la convergence de la physique, de la chimie et de la biologie à l’échelle micro/nanométrique qui s’appuie sur les micro et nanotechnologies. Cet article décrit en détail ces TP et expose leur intérêt pédagogique pour la formation des étudiants ainsi que pour des enseignants-chercheurs

    Role of cellular tone and microenvironmental conditions on cytoskeleton stiffness assessed by tensegrity model

    No full text
    We have tried to understand the role of cellular tone (or internal tension mediated by actin filaments) and interactions with the microenvironment on cellular stiffness. For this purpose, we compared the apparent elasticity modulus of a 30-element tensegrity structure with cytoskeleton stiffness measured in subconfluent and confluent adherent cells by magnetocytometry, assessing the effect of changing cellular tone by treatment with cytochalasin D. Intracellular and extracellular mechanical interactions were analyzed on the basis of the non-dimensional relationships between the apparent elasticity modulus of the tensegrity structure normalized by Young's modulus of the elastic element versus: (i) element size, (ii) internal tension, and (iii) number of spatially fixed nodes, for small deformation conditions. Theoretical results and rigidity measurements in adherent cells consistently showed that higher cellular tone and stronger interdependencies with cellular environment tend to increase cytoskeleton stiffness. Visualization of the actin lattice before and after depolymerization by cytochalasin D tended to confirm the geometrical and mechanical assumptions supported by analysis of the present model
    corecore