306 research outputs found

    Conserved functional domains and a novel tertiary interaction near the pseudoknot drive translational activity of hepatitis C virus and hepatitis C virus-like internal ribosome entry sites

    Get PDF
    The translational activity of the hepatitis C virus (HCV) internal ribosome entry site (IRES) and other HCV-like IRES RNAs depends on structured RNA elements in domains II and III, which serve to recruit the ribosomal 40S subunit, eukaryotic initiation factor (eIF) 3 and the ternary eIF2/Met-tRNAiMet/GTP complex and subsequently domain II assists subunit joining. Porcine teschovirus-1 talfan (PTV-1) is a member of the Picornaviridae family, with a predicted HCV-like secondary structure, but only stem-loops IIId and IIIe in the 40S-binding domain display significant sequence conservation with the HCV IRES. Here, we use chemical probing to show that interaction sites with the 40S subunit and eIF3 are conserved between HCV and HCV-like IRESs. In addition, we reveal the functional role of a strictly conserved co-variation between a purine–purine mismatch near the pseudoknot (A–A/G) and the loop sequence of domain IIIe (GAU/CA). These nucleotides are involved in a tertiary interaction, which serves to stabilize the pseudoknot structure and correlates with translational efficiency in both the PTV-1 and HCV IRES. Our data demonstrate conservation of functional domains in HCV and HCV-like IRESs including a more complex structure surrounding the pseudoknot than previously assumed

    Initiation of Protein Synthesis from the A Site of the Ribosome

    Get PDF
    AbstractPositioning of the translation initiation complex on mRNAs requires interaction between the anticodon of initiator Met-tRNA, associated with eIF2-GTP and 40S ribosomal subunit, and the cognate start codon of the mRNA. We show that an internal ribosome entry site located in the genome of cricket paralysis virus can form 80S ribosomes without initiator Met-tRNA, eIF2, or GTP hydrolysis, with a CCU triplet in the ribosomal P site and a GCU triplet in the A site. P-site mutagenesis revealed that the P site was not decoded, and protein sequence analysis showed that translation initiates at the triplet in the A site. Translational initiation from the A site of the ribosome suggests that the repertoire of translated open reading frames in eukaryotic mRNAs may be greater than anticipated

    Quantitative analysis of ribosome–mRNA complexes at different translation stages

    Get PDF
    Inhibition of primer extension by ribosome–mRNA complexes (toeprinting) is a proven and powerful technique for studying mechanisms of mRNA translation. Here we have assayed an advanced toeprinting approach that employs fluorescently labeled DNA primers, followed by capillary electrophoresis utilizing standard instruments for sequencing and fragment analysis. We demonstrate that this improved technique is not merely fast and cost-effective, but also brings the primer extension inhibition method up to the next level. The electrophoretic pattern of the primer extension reaction can be characterized with a precision unattainable by the common toeprint analysis utilizing radioactive isotopes. This method allows us to detect and quantify stable ribosomal complexes at all stages of translation, including initiation, elongation and termination, generated during the complete translation process in both the in vitro reconstituted translation system and the cell lysate. We also point out the unique advantages of this new methodology, including the ability to assay sites of the ribosomal complex assembly on several mRNA species in the same reaction mixture

    Rationale for the post-harvest processing of leaf mass of agricultural crops using microwave radiation

    Get PDF
    Post-harvest processing of the leaf mass of various agricultural crops has general patterns. The peculiarity of the structure of the leaves is that the amount of water contained in the leaf blade and in the midrib is approximately the same, but the area of the evaporating surface of the midrib is 10–15 times less than the area of the evaporating surface of the leaf plate. Therefore, the difference in drying modes for these parts of the leaves justifies the need for different physical methods of influencing them. The aim of the research was to substantiate experimentally the general principles of moisture removal from the leaf mass of various agricultural crops using microwave radiation. Processing in the microwave field was carried out for 1,0; 1,5; 2,0; 2,5 minutes. The treated leaf layers were dried naturally. Leaves dried by convection under natural and artificial conditions, only without microwave treatment, served as a control sample. For the post-harvest processing of plantain leaves, a combined drying method is recommended, where in the first phase the leaves are treated with microwave radiation for 2,0–2,5 minutes, depending on the thickness of the leaf layer, and then in the second phase under natural conditions for 8 hours. Microwave – processing followed by convective drying in natural conditions is considered the most compromise method for drying beet tops leaves both in terms of drying time and in terms of the energy intensity of the process. On the basis on the results of the research, the application of the most rational processes of post-harvest processing of leaf mass of agricultural crops was substantiated, which consists in their processing by microwave radiation, followed by convective drying in a natural way

    Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation

    Get PDF
    Adaptation to the host cell environment to efficiently take-over the host cell's machinery is crucial in particular for small RNA viruses like picornaviruses that come with only small RNA genomes and replicate exclusively in the cytosol. Their Internal Ribosome Entry Site (IRES) elements are specific RNA structures that facilitate the 5′ end-independent internal initiation of translation both under normal conditions and when the cap-dependent host protein synthesis is shut-down in infected cells. A longstanding issue is which host factors play a major role in this internal initiation. Here, we show that the functionally most important domain V of the poliovirus IRES uses tRNAGly anticodon stem–loop mimicry to recruit glycyl-tRNA synthetase (GARS) to the apical part of domain V, adjacent to the binding site of the key initiation factor eIF4G. The binding of GARS promotes the accommodation of the initiation region of the IRES in the mRNA binding site of the ribosome, thereby greatly enhancing the activity of the IRES at the step of the 48S initiation complex formation. Moonlighting functions of GARS that may be additionally needed for other events of the virus–host cell interaction are discussed

    Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs

    Get PDF
    Many mammalian mRNAs possess long 5′ UTRs with numerous stem-loop structures. For some of them, the presence of Internal Ribosome Entry Sites (IRESes) was suggested to explain their significant activity, especially when cap-dependent translation is compromised. To test this hypothesis, we have compared the translation initiation efficiencies of some cellular 5′ UTRs reported to have IRES-activity with those lacking IRES-elements in RNA-transfected cells and cell-free systems. Unlike viral IRESes, the tested 5′ UTRs with so-called ‘cellular IRESes’ demonstrate only background activities when placed in the intercistronic position of dicistronic RNAs. In contrast, they are very active in the monocistronic context and the cap is indispensable for their activities. Surprisingly, in cultured cells or cytoplasmic extracts both the level of stimulation with the cap and the overall translation activity do not correlate with the cumulative energy of the secondary structure of the tested 5′ UTRs. The cap positive effect is still observed under profound inhibition of translation with eIF4E-BP1 but its magnitude varies for individual 5′ UTRs irrespective of the cumulative energy of their secondary structures. Thus, it is not mandatory to invoke the IRES hypothesis, at least for some mRNAs, to explain their preferential translation when eIF4E is partially inactivated

    Dizajniranje i vrednovanje okularnih umetaka moksifloksacin hidroklorida

    Get PDF
    The objective of the present investigation was to prepare and evaluate ocular inserts of moxifloxacin. An ocular insert was made from an aqueous dispersion of moxifloxacin, sodium alginate, polyvinyl alcohol, and dibutyl phthalate by the film casting method. The ocular insert (5.5 mm diameter) was cross-linked by CaCl2 and was coated with Eudragit S-100, RL-100, RS-100, E-100 or Eudragit L-100. The in vitro drug drainage/permeation studies were carried out using an all-glass modified Franz diffusion cell. The drug concentration and mucoadhesion time of the ocular insert were found satisfactory. Cross-linking and coating with polymers extended the drainage from inserts. The cross-linked ocular insert coated with Eudragit RL-100 showed maximum drug permeation compared to other formulations.Cilj rada bio je priprava i evaluacija okularnih umetaka moksifloksacina. Okularni umetak izrađen je od vodene suspenzije moksifloksacina, natrijevog alginata, polivinilnog alkohola i dibutil-ftalata metodom odlijevanja filma. Okularni umetak (promjera 5,5 mm) umrežen je pomoću CaCl2 i obložen Eudragitom S-100, RL-100, RS-100, E-100 ili Eudragit L-100. In vitro drenaža/permeacija lijeka proučavana je koristeći staklenu modificiranu Franzovu difuzijsku ćeliju. Koncentracija lijeka i vrijeme mukoadhezije okularnih umetaka bili su zadovoljavajući. Umrežavanje i oblaganje polimerima produljilo je drenažu iz umetaka. Umreženi okularni umetci obloženi s Eudragit RL-100 pokazali su veću permeaciju lijeka u odnosu na ostale pripravke

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders

    Nat Struct Mol Biol

    Get PDF
    Internal ribosome entry sites (IRESs) facilitate an alternative, end-independent pathway of translation initiation. A particular family of dicistroviral IRESs can assemble elongation-competent 80S ribosomal complexes in the absence of canonical initiation factors and initiator transfer RNA. We present here a cryo-EM reconstruction of a dicistroviral IRES bound to the 80S ribosome. The resolution of the cryo-EM reconstruction, in the subnanometer range, allowed the molecular structure of the complete IRES in its active, ribosome-bound state to be solved. The structure, harboring three pseudoknot-containing domains, each with a specific functional role, shows how defined elements of the IRES emerge from a compactly folded core and interact with the key ribosomal components that form the A, P and E sites, where tRNAs normally bind. Our results exemplify the molecular strategy for recruitment of an IRES and reveal the dynamic features necessary for internal initiation
    corecore