88 research outputs found
Separable Image Warping with Spatial Lookup Tables
Image warping refers to the 2-D resampling of a source image onto a target image. In the general case, this requires costly 2-D filtering operations. Simplifications are possible when the warp can be expressed as a cascade of orthogonall-D transformations. In these cases, separable transformations have been introduced to realize large performance gains. The central ideas in this area were formulated in the 2-pass algorithm by Catmull and Smith. Although that method applies over an important class of transformations, there are intrinsic problems which limit its usefulness. The goal of this work is to extend the 2-pass approach to handle arbitrary spatial mapping functions. We address the difficulties intrinsic to 2-pass scanline algorithms: bottlenecking, foldovers, and the lack of closed-form inverse solutions. These problems are shown to be resolved in a general, efficient, separable technique, with graceful degradation for transformations of increasing complexity
Via Hexagons to Squares in Ferrofluids: Experiments on Hysteretic Surface Transformations under Variation of the Normal Magnetic Field
We report on different surface patterns on magnetic liquids following the
Rosensweig instability. We compare the bifurcation from the flat surface to a
hexagonal array of spikes with the transition to squares at higher fields. From
a radioscopic mapping of the surface topography we extract amplitudes and
wavelengths. For the hexagon--square transition, which is complex because of
coexisting domains, we tailor a set of order parameters like peak--to--peak
distance, circularity, angular correlation function and pattern specific
amplitudes from Fourier space. These measures enable us to quantify the smooth
hysteretic transition. Voronoi diagrams indicate a pinning of the domains. Thus
the smoothness of the transition is roughness on a small scale.Comment: 17 pages, 14 figure
Evidence of multidecadal salinity variability in the eastern tropical North Atlantic
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA3010, doi:10.1029/2005PA001257.Ocean circulation and global climate are strongly influenced by
seawater density, which is itself controlled by salinity and temperature.
Although adequate instrumental sea-surface temperature (SST) records
exist for most of the surface oceans over the past 100-150 years, records of
salinity really only exist for the last 40-50 years. Here we show that
longer proxy records from corals (Siderastrea radians) in the eastern
tropical North Atlantic are dominated by multi-decadal variations in
salinity which are correlated with the relationship between SST and the
North Atlantic Oscillation (NAO) over the course of the 20th century. The
data reveal an increase in eastern tropical North Atlantic salinity of +0.5
psu between about 1950-1990. Rather than a monotonic secular increase,
as indicated by some instrumental records, the pre-instrumental coral
proxy records presented here suggest that salinity in the tropical North
Atlantic is periodic on a decadal to multi-decadal scale
The possible role of local air pollution in climate change in West Africa
The climate of West Africa is characterized by a sensitive monsoon system that is associated with marked natural precipitation variability. This region has been and is projected to be subject to substantial global and regional-scale changes including greenhouse-gas-induced warming and sea-level rise, land-use and land-cover change, and substantial biomass burning. We argue that more attention should be paid to rapidly increasing air pollution over the explosively growing cities of West Africa, as experiences from other regions suggest that this can alter regional climate through the influences of aerosols on clouds and radiation, and will also affect human health and food security. We need better observations and models to quantify the magnitude and characteristics of these impacts
Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa
<p>Abstract</p> <p>Background</p> <p>In the first part of this study, an extensive literature survey led to the construction of a new version of the <it>Liverpool Malaria Model </it>(LMM). A new set of parameter settings was provided and a new development of the mathematical formulation of important processes related to the vector population was performed within the LMM. In this part of the study, so far undetermined model parameters are calibrated through the use of data from field studies. The latter are also used to validate the new LMM version, which is furthermore compared against the original LMM version.</p> <p>Methods</p> <p>For the calibration and validation of the LMM, numerous entomological and parasitological field observations were gathered for West Africa. Continuous and quality-controlled temperature and precipitation time series were constructed using intermittent raw data from 34 weather stations across West Africa. The meteorological time series served as the LMM data input. The skill of LMM simulations was tested for 830 different sets of parameter settings of the undetermined LMM parameters. The model version with the highest skill score in terms of entomological malaria variables was taken as the final setting of the new LMM version.</p> <p>Results</p> <p>Validation of the new LMM version in West Africa revealed that the simulations compare well with entomological field observations. The new version reproduces realistic transmission rates and simulated malaria seasons are comparable to field observations. Overall the new model version performs much better than the original model. The new model version enables the detection of the epidemic malaria potential at fringes of endemic areas and, more importantly, it is now applicable to the vast area of malaria endemicity in the humid African tropics.</p> <p>Conclusions</p> <p>A review of entomological and parasitological data from West Africa enabled the construction of a new LMM version. This model version represents a significant step forward in the modelling of a weather-driven malaria transmission cycle. The LMM is now more suitable for the use in malaria early warning systems as well as for malaria projections based on climate change scenarios, both in epidemic and endemic malaria areas.</p
State legitimacy and famines in Sub-Saharan Africa
Political Economy of famines mainly focuses on political regimes to understand the role of institutions. In this paper, we investigate a broader concept, state legitimacy, and its role on one specific development outcome, famine management. State legitimacy refers to the political history of a country, meaning the embedding of state and society. Using a database of Sub-Saharan countries observed from 1980 to 2005, we use three empirical strategies: logit on famine occurrence, negative binomial regression and Arellano-Bond dynamic model on the number of years of famines. They all lead to the same results: there is room for a political economy of famine based on an analysis of state. State legitimacy prevents famines, controlling for shocks countries might go through, and controlling for the quality of government.
The main contributions of this paper are first to consider the role of state legitimacy in the political economy of famines and second to apply the concept in an empirical analysis, using for the first time a state legitimacy variable
- âŠ