60 research outputs found

    Scattering by coupled resonating elements in air

    Get PDF
    Scattering by (a) a single composite scatterer consisting of a concentric arrangement of an outer N-slit rigid cylinder and an inner cylinder which is either rigid or in the form of a thin elastic shell and (b) by a finite periodic array of these scatterers in air has been investigated analytically and through laboratory experiments. The composite scatterer forms a system of coupled resonators and gives rise to multiple low-frequency resonances. The corresponding analytical model employs polar angle dependent boundary conditions on the surface of the N-slit cylinder. The solution inside the slits assumes plane waves. It is shown also that in the low-frequency range the N-slit rigid cylinder can be replaced by an equivalent fluid layer. Further approximations suggest a simple square root dependence of the resonant frequencies on the number of slits and this is confirmed by data. The observed resonant phenomena are associated with Helmholtz-like behaviour of the resonator for which the radius and width of the openings are much smaller than the wavelength. The problem of scattering by a finite periodic array of such coupled resonators in air is solved using multiple scattering techniques. The resulting model predicts band-gap effects resulting from the resonances of the individual composite scatterers below the first Bragg frequency. Predictions and data confirm that use of coupled resonators results in substantial insertion loss peaks related to the resonances within the concentric configuration. In addition, for both scattering problems experimental data, predictions of the analytical approach and predictions of the equivalent fluid layer approximations are compared in the low-frequency interval

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    T lymphocytes need less than 3 min to discriminate between peptide MHCs with similar TCR-binding parameters.

    Get PDF
    T lymphocytes need to detect rare cognate foreign peptides among numerous foreign and self-peptides. This discrimination seems to be based on the kinetics of TCRs binding to their peptide-MHC (pMHC) ligands, but there is little direct information on the minimum time required for processing elementary signaling events and deciding to initiate activation. Here, we used interference reflection microscopy to study the early interaction between transfected human Jurkat T cells expressing the 1G4 TCR and surfaces coated with five different pMHC ligands of 1G4. The pMHC concentration required for inducing 50% maximal IFN-γ production by T cells, and 1G4-pMHC dissociation rates measured in soluble phase or on surface-bound molecules, displayed six- to sevenfold variation among pMHCs. When T cells were dropped onto pMHC-coated surfaces, rapid spreading occurred after a 2-min lag. The initial spreading rate measured during the first 45 s, and the contact area, were strongly dependent on the encountered TCR ligand. However, the lag duration did not significantly depend on encountered ligand. In addition, spreading appeared to be an all-or-none process, and the fraction of spreading cells was tightly correlated to the spreading rate and spreading area. Thus, T cells can discriminate between fairly similar TCR ligands within 2 min
    corecore