2,648 research outputs found

    Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem

    Get PDF
    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists

    A simplified protocol for detecting two systemic bait markers (Rhodamine B and iophenoxic acid) in small mammals

    Get PDF
    We developed a method of quantifying levels of fluorescence in the whiskers of wild stoats (Mustela erminea) using fluorescence microscopy and Axiovision 3.0.6.1 software. The method allows for discrimination between natural fluorescence present in or on a whisker, and the fluorescence resulting from the ingestion of the systemic marker Rhodamine B (RB), although some visual judgement is still required. We also developed a new high performance liquid chromatography (HPLC) protocol for detecting the systemic marker iophenoxic acid (IPA) in the blood of laboratory rats (Rattus norvegicus) and wild stoats. With this method, the blood of an animal that has consumed IPA can be tested for the presence of the foreign IPA compound itself. This is a more reliable test than the previous method, which measured the raised level of natural blood protein-bound iodine correlated with IPA absorption. The quantity of blood required from animal subjects is very small (10 μl), so the testing is less intrusive and the method can be extended to smaller species. The extraction technique uses methanol, rather than acids and heavy metal salts, thereby simplifying the procedure. Recovery of IPA is quantitative, giving a highly reliable reading. In experiments on captive rats the IPA method proved successful. Of 12 positively marked carcasses, two that had not been frozen for the 24 h before blood samples were taken showed relatively lower IPA levels. The same IPA detection method, as well as the whisker analysis for RB, was applied successfully to a population of wild stoats to which both Rhodamine B and IPA were made available at bait stations. The presence of both bait markers was detectable in rats for at least 21 days and in stoats for at least 27 days

    How I do it: Minimally invasive Cox-Maze IV procedure

    Get PDF
    Clinical vignette Our patient is a 66-year-old female with a 2-year history of atrial fibrillation (AF) and mitral valve prolapse who presented with dyspnea on exertion. She was found to be in AF upon her admission electrocardiogram. A transthoracic echocardiogram was performed demonstrating moderate-to-severe mitral regurgitation (MR) with a left atrial (LA) diameter of 5.1 cm and normal left ventricular (LV) function. After completion of her workup, it was decided that the patient would best be treated by a minimally invasive Cox-Maze IV (CMIV) and concomitant mitral valve procedure given her significant MR and symptoms. This article and accompanying video will discuss how the minimally invasive CMIV procedure is performed. Surgical technique

    A Model for the Analysis of Caries Occurrence in Primary Molar Tooth Surfaces

    Get PDF
    Recently methods of caries quantification in the primary dentition have moved away from summary ‘whole mouth’ measures at the individual level to methods based on generalised linear modelling (GLM) approaches or survival analysis approaches. However, GLM approaches based on logistic transformation fail to take into account the time-dependent process of tooth/surface survival to caries. There may also be practical difficulties associated with casting parametric survival-based approaches in a complex multilevel hierarchy and the selection of an optimal survival distribution, while non-parametric survival methods are not generally suitable for the assessment of supplementary information recorded on study participants. In the current investigation, a hybrid semi-parametric approach comprising elements of survival-based and GLM methodologies suitable for modelling of caries occurrence within fixed time periods is assessed, using an illustrative multilevel data set of caries occurrence in primary molars from a cohort study, with clustering of data assumed to occur at surface and tooth levels. Inferences of parameter significance were found to be consistent with previous parametric survival-based analyses of the same data set, with gender, socio-economic status, fluoridation status, tooth location, surface type and fluoridation status-surface type interaction significantly associated with caries occurrence. The appropriateness of the hierarchical structure facilitated by the hybrid approach was also confirmed. Hence the hybrid approach is proposed as a more appropriate alternative to primary caries modelling than non-parametric survival methods or other GLM-based models, and as a practical alternative to more rigorous survival-based methods unlikely to be fully accessible to most researchers

    Tall Fescue Mowing Height Effects under Simulated Athletic Field Traffic

    Get PDF
    Tall fescue (Schedonorus arundinaceus) offers an alternative to kentucky bluegrass (Poa pratensis) for use on athletic fields. Tall fescue has the ability to withstand athletic field traffic, but little is known about the best management practices such as optimal height of cut (HOC). A 2-year study was conducted on established ‘Snap Back’ tall fescue grown over a native soil root zone to determine optimal HOC under simulated athletic field traffic. Plots were maintained at various HOC treatments (1.5, 2, or 3 inches) for the duration of the growing season. Twenty-five simulated traffic events were applied each fall with a modified Baldree traffic simulator. The percentage of green cover (GC) loss per traffic event by HOC varied between years. In 2017, the 1.5-inch HOC improved traffic tolerance (–1.7% GC per event) compared with the other HOC treatments (–2.6% GC per event) in terms of percentage of GC. In 2018, the HOC did not have an impact on traffic tolerance. Differences in traffic tolerance between years could be a result of differences in precipitation (78 mm in 2017, 6 mm in 2018) during the period when traffic occurred, which suggest that the lower HOC performs better under wet conditions compared with the greater HOC. There were no differences among treatments for the safety variables measured (surface hardness, rotational resistance, and soil moisture)

    Assessing Function and Endurance in Adults with Spinal and Bulbar Muscular Atrophy: Validity of the Adult Myopathy Assessment Tool

    Get PDF
    Purpose. The adult myopathy assessment tool (AMAT) is a performance-based battery comprised of functional and endurance subscales that can be completed in approximately 30 minutes without the use of specialized equipment. The purpose of this study was to determine the construct validity and internal consistency of the AMAT with a sample of adults with spinal and bulbar muscular atrophy (SBMA). Methods. AMAT validity was assessed in 56-male participants with genetically confirmed SBMA (mean age, 53 ± 10 years). The participants completed the AMAT and assessments for disease status, strength, and functional status. Results. Lower AMAT scores were associated with longer disease duration (r = -0.29; P \u3c 0.03) and lower serum androgen levels (r = 0.49-0.59; P \u3c 0.001). The AMAT was significantly correlated with strength and functional status (r = 0.82-0.88; P \u3c 0.001). The domains of the AMAT exhibited good internal consistency (Cronbach\u27s α  = 0.77-0.89; P \u3c 0.001). Conclusions. The AMAT is a standardized, performance-based tool that may be used to assess functional limitations and muscle endurance. The AMAT has good internal consistency, and the construct validity of the AMAT is supported by its significant associations with hormonal, strength, and functional characteristics of adults with SBMA. This trial is registered with Clinicaltrials.gov identifier NCT00303446

    Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes

    Get PDF
    Dual specificity phosphatase 6 (DUSP6) is a protein phosphatase that deactivates extracellular-signal-regulated kinase (ERK). Since the ovarian cancer biomarker human epididymis protein 4 (HE4) interacts with the ERK pathway, we sought to determine the relationship between DUSP6 and HE4 and elucidate DUSP6’s role in epithelial ovarian cancer (EOC). Viability assays revealed a significant decrease in cell viability with pharmacological inhibition of DUSP6 using (E/Z)-BCI hydrochloride in ovarian cancer cells treated with carboplatin or paclitaxel, compared to treatment with either agent alone. Quantitative PCR was used to evaluate levels of ERK pathway response genes to BCI in combination with recombinant HE4 (rHE4), carboplatin, and paclitaxel. Expression of EGR1, a promoter of apoptosis, was higher in cells co-treated with BCI and paclitaxel or carboplatin than in cells treated with chemotherapeutic agents alone, while expression of the proto-oncogene c-JUN was decreased with co-treatment. The effect of BCI on the expression of these two genes opposed that of rHE4. Pathway focused quantitative PCR also revealed suppression of ERBB3 in cells co-treated with BCI plus carboplatin or paclitaxel. Finally, expression levels of DUSP6 in EOC tissue were evaluated by immunohistochemistry, revealing significantly increased levels of DUSP6 in serous EOC tissue compared to adjacent normal tissue. A positive correlation between HE4 and DUSP6 levels was determined by Spearman Rank correlation. In conclusion, DUSP6 inhibition sensitizes ovarian cancer cells to chemotherapeutic agents and alters gene expression of ERK response genes, suggesting that DUSP6 could plausibly function as a novel therapeutic target to reduce chemoresistance in EOC
    corecore