2,695 research outputs found

    Conductance fluctuations in a quantum dot under almost periodic ac pumping

    Full text link
    It is shown that the variance of the linear dc conductance fluctuations in an open quantum dot under a high-frequency ac pumping depends significantly on the spectral content of the ac field. For a sufficiently strong ac field γτϕ<<1\gamma\tau_{\phi}<< 1, where 1/τϕ1/\tau_{\phi} is the dephasing rate induced by ac noise and γ\gamma is the electron escape rate, the dc conductance fluctuations are much stronger for the harmonic pumping than in the case of the noise ac field of the same intensity. The reduction factor rr in a static magnetic field takes the universal value of 2 only for the white--noise pumping. For the strictly harmonic pumping A(t)=A0cosωtA(t)=A_{0}\cos\omega t of sufficiently large intensity the variance is almost insensitive to the static magnetic field r1=2τϕγ<<1r-1= 2\sqrt{\tau_{\phi}\gamma} << 1. For the quasi-periodic ac field of the form A(t)=A0[cos(ω1t)+cos(ω2t)]A(t)=A_{0} [\cos(\omega_{1} t)+\cos(\omega_{2} t)] with ω1,2>>γ\omega_{1,2} >> \gamma and γτϕ<<1\gamma\tau_{\phi} << 1 we predict the novel effect of enchancement of conductance fluctuations at commensurate frequencies ω2/ω1=P/Q\omega_{2}/\omega_{1}=P/Q.Comment: 4 pages RevTex, 4 eps figures; the final version to appear in Phys.Rev.

    Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers

    Get PDF
    Tubular vascular grafts 1.1 mm in diameter based on poly(L-lactide) microfibers were obtained by electrospinning. X-ray diffraction and scanning electron microscopy data demonstrated that the samples treated at T=70°C for 1 h in the fixed state on a cylindrical mandrel possessed dense fibrous structure; their degree of crystallinity was approximately 44%. Strength and deformation stability of these samples were higher than those of the native blood vessels; thus, it was possible to use them in tissue engineering as bioresorbable vascular grafts. The experiments on including implantation into rat abdominal aorta demonstrated that the obtained vascular grafts did not cause pathological reactions in the rats; in four weeks, inner side of the grafts became completely covered with endothelial cells, and fibroblasts grew throughout the wall. After exposure for 12 weeks, resorption of PLLA fibers started, and this process was completed in 64 weeks. Resorbed synthetic fibers were replaced by collagen and fibroblasts. At that time, the blood vessel was formed; its neointima and neoadventitia were close to those of the native vessel in structure and composition

    Arbitrary controlled-phase gate on fluxonium qubits using differential ac-Stark shifts

    Full text link
    Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to non-computational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ\textrm{ZZ}-interaction due to unequal ac-Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ\textrm{ZZ}-term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1%1\% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors

    Stochastic pump effect and geometric phases in dissipative and stochastic systems

    Full text link
    The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).Comment: Review. 35 pages. J. Phys. A: Math, Theor. (in press

    Andreev levels in a single-channel conductor

    Get PDF
    We calculate the subgap density of states of a disordered single-channel normal metal connected to a superconductor at one end (NS junction) or at both ends (SNS junction). The probability distribution of the energy of a bound state (Andreev level) is broadened by disorder. In the SNS case the two-fold degeneracy of the Andreev levels is removed by disorder leading to a splitting in addition to the broadening. The distribution of the splitting is given precisely by Wigner's surmise from random-matrix theory. For strong disorder the mean density of states is largely unaffected by the proximity to the superconductor, because of localization, except in a narrow energy region near the Fermi level, where the density of states is suppressed with a log-normal tail.Comment: 12 pages, 5 figure
    corecore