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Andreev levels in a single-channel conductor
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We calculate the subgap density of states of a disordered single-channel normal metal connected to a
superconductor at one end (normal-metal—superconductor junction) or at both ends [superconductor—normal
metal—superconductor (SNS) junction] The probability distribution of the energy of a bound state (Andreev
level) 1s broadened by disorder In the SNS case the twofold degeneracy of the Andreev levels 13 removed by
disorder leading to a splitting 1n addrtion to the broadening The distribution of the splitting 1s given precisely
by Wigner’s surmise from random-matrix theory For strong disorder the mean density of states is largely
unaffected by the proximuty to the superconductor, because of localization, except in a narrow energy region
near the Fermi level, where the density of states 1s suppressed with a log-normal tail
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I. INTRODUCTION

Several recent works have identified and studied devia-
tions from mean-field theory in the subgap density of states
of a normal metal n contact with a superconductor '~* The
excitation spectrum below the gap of the bulk supercon-
ductor consists of a coheient superposition of electron and
hole excitations, coupled by Andreev reflection® at the
normal-metal—superconductor (NS) mterface The energy of
these Andreev levels fluctuates from sample to sample, but
such mesoscopic fluctuations are 1gnored i mean-field
theory Because of these fluctuations, the ensemble averaged
density of states (¥(e)) acquires a tail that extends below the
mean-field gap, vanishing only at the Fermi level (zero ex-
citation energy ) The fluctuations become particularly large
if the size of the normal metal 1s greater than the localization
length

The purpose of this paper 1s to analyze an extreme case of
complete breakdown of mean-field theory, which 1s still suf-
ficiently simple that 1t can be solved exactly This 1s the case
of single-mode conduction through a disordered normal-
metal wire attached to a superconductor The localization
length 1n this geometry 1s equal to the elastic mean-free path
{, so that the wire crosses over with mcreasing length L fiom
the ballistic regime duectly mto the localized regime—
without an intermediate diffusive regime Perturbation theory
1s possible m the quasiballistic regime /> L, but for [<<L an
essentially nonperturbative approach 1s required We will use
an approach based on a scaling equatton (also known as 1n-
vanant embedding) that has proved its use before mn different
contexts 59

We will contrast the quasiballistic and localized 1egimes,
as well as the two geometiies with a single superconducting
contact (NS junction) o1 with two supeiconducting contacts
at both ends of the notmal metal wne [superconductor—
normal metal—superconductor (SNS) junction] If we assume
that the two supeiconductots have the same phase, so that
there 1s no supercuirent flowing thiough the normal metal,
then the Andieev levels of the SNS junction ate doubly de-
generate m the absence of disoider This degeneracy 1s bio-
ken by disorder We find that for weak disoider the probabil-
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1ty distribution of the splhitting 1s given precisely by Wigner’s
surmise from random-matrix theory ' (The spectra of cha-
otic systems have spacings described by Gaudin’s distribu-
tion, which 1s close to, but not identical with Wigner’s
surmise '%)

In the locahzed regime the fluctuations of the Andreev
levels become greater than their spacing, and they can no
longer be distinguished 1n the mean density of states, which
decieases smoothly to zero on approachmg the Fermu level
The energy scale for this soft gap 1s exponentially small be-
cause of localization, given by &,= (fivg/l)e ~L The decay
of (v(e)) for e<e, has a log-normal form ccexp[
—(/4L)In? (e/e,)] Such log-normal tails are characteristic of
1are fluctuations 1 the localized regime' and have appeared
recently 1n the context of the superconductor proximty
effect *

I1. QUASIBALLISTIC REGIME
A. NS junction

The NS junction consists of a piece of normal metal of
length L connected at one end to a superconductor and
closed at the other end [see Fig 1(a)] The width of the
normal metal 1s of the order of the Fermu wavelength Ay,
such that there 1s a single propagating mode at the Fermu
energy £ We assume an 1deal junction, without any tunnel
barrier and with £ much greater than the superconducting
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FIG 1 Geometty of the NS and SNS junctions
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gap Ay An electron incident on the superconductor with
ene1gy e<A, above the Fermut level 1s then Andieev re-
flected as a hole at energy & below the Fermu level, with the
phase shuft

¢4=—aiccos(e/Ag), —m2<hy<0 (1)

We wish to know at which & a bound state (Andieev level)
will form 1n the normal metal
The electron and hole components of the wave function

Y(x)=[u(x),v(x)] satisfy the Bogoliubov-de Gennes
(BdG) equation'?

Ho A

A ¥ _ H(,)y ‘//_ & l/’: (2)

where Ho=—(#%2m)d* dx%+V(x) 1s the Hamiltoman of
the normal metal (with disorder potential V) and A(x)
=Ay6(—x) 1s the superconducting gap (which vanishes in
the noimal-metal region x>0) For narrow junctions (width
much less than the supeiconducting coherence length &
=hvp/Ay) the depletion of A(x) on the superconducting
side may be neglected, hence the step function 6(—x) At
the closed end x=L of the normal metal we impose the
boundary condition ¢(L)=0

In this section we address the quasiballistic regime of
mean free path [>L We can then treat V as a small pertur-
bation on the ballistic bound states

1 ( sin[ (kp+k)(x—L)]
tﬂ(x)——\/; s1n[(kF—k)(x—L)—7rn])’ O<x<L,
(3a)
_ 1( si[kpx —(kp+k)L] )
w(x)_\/—'i sm[kpx—(kp—k)L—mn]
Xexp ——x—smqﬁA), x<0 (3b)
o

The normalization constant 18 Z=L—5&,/sin ¢, for kL
»>1 (We denote kp=muvr/h=2m/\r ) The wave number
k=e¢el/fiv should satisfy the quantization condition

2kL+¢s=mn, n=0,1.2, 4)

The total number of Andreev levels within the gap 1s 2L/ 7¢,
for L> &, (There remamns one level if L<&y)

To first order 1n V the energy level is shufted by the matrix
element

L
Se= J-o dx V(x)[u(x)?—v(x)?] (5)

We assume a potential with a shoit-tange cortelation, ex
pressed by

22
l

(V(x))=0, (V()V(x"))= S(x—x"),  (6)

PHYSICAL REVIEW B 64 134206

L §y/L=024, liL=12
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FIG 2 Mean density of states (in urnuts of vo=2L/whvy) of a
quasiballistic NS junction The Gaussian with vanance given by Eq
(7) (solid curves) 1s compared to the numerical solution of the BAG
equation (data points)

where () stands for the disorder aveiage It follows that
the distiibution of an Andreev level around 1ts ballistic value
1s a Gaussian with zero mean, {Se)=0, and variance

ﬁzvf?(zL-F &p SN py)
20(2L— &y /s ¢y)?

(5e%) 7

By way of illustiation, we show in Fig 2 the mean density of
states of an NS junction contamning three Andreev levels
(&y/L=024) with mean-free path /=12L The Gaussian
given by Eq (7) agrees very well with the numerical solution
of the BAG equation (data points)

We biiefly explamn the numerical method The BdG equa-
tion 1s solved numetically on a one-dimensional grid (lattice
constant a) by replacig the Laplacian by finte differences
and ttuncating the Hamiltonian matrix m the superconduct-
mg region, where the wave function 1s evanescent for ener-
gies m the superconducting gap The 1esulting tight-binding
model has nearest-neighbor coupling y=#%%2ma? (band-
width 4v) We set Ep=vy and Ay=0 1, contesponding to
Ap=6a and &= 10y3a The disorder 1s modeled by a ran-
dom on-site potential which 1s uniformly distributed 1 the
mterval (—W,W) The mean-free path fiom the Born ap-
proxmmation, [ =3 E p(4 y— E)al W?, was found to fit well to
the prediction of one-dimensional scaling theory for the
mean 1nverse transmussion piobability, (T™')=3[1
+exp(2L/1)], 1n the complete 1ange from the quasiballistic to
the localized regime (The locahization length £ 15 related to
the mean-fiee path by =2/, c¢f Ref 6) This allows for a
parameter-fiee comparison of the analytical and numerical
results for the ensemble-averaged density of states

B. SNS junction

The quasiballistic regime n an SNS junction [Fig 1(b)] 1s
qualitatively different fiom the NS case of the precedmg sec
tion The 1eason 1s the double degeneiacy of the unpertuibed
Andreev levels This degeneiacy exists tf the phase of the
order paiameter m the two supetconductors 1s the same,
which 1s what we assume 1 this paper Let us examine the
splitting of the Andieev levels by the disoider potential
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The SNS junction has energy gap
Alx)=AgO(—x)+Ay0(x—L) (8)
The quantization condition 1eads
kL+¢,=nm, n=0,12, 9)

There are L/w¢y Andieev levels (for L> &), each level be-
mg doubly degeneiate We choose the two independent
eigenfunctions ¥+ (x) such that they cany zero curtent They
are given by

1( cos(kgx) ) ( x
exp ——sm(bA), x<0,

V0= 5 costpr—6) &
(10a)

B! ( cos[ (kp+k)x] )

¢+(x)—\/7 cos[ (kp—k)x— 1) 0<x<L,

(10b)

1 (cos(kpx-f—kL) x—1
¢+(x)—\/7 cos(kpx+ m11) exp(——go—3111¢A), x>L,
(10c)

and ¢_(x) 1s obtained by replacing cosine by sine The not-
malization constant 1s now Z' =L~ &q/sm ¢,

To first order m V the levels are splitted symmetrically
around the ballistic value, by an amount *+ $s The basis (10)
18 chosen 1n such a way that the off-diagonal elements of the
perturbation vanish The shift of each level can then be cal
culated from Eq (5) using the corresponding eigenfunction
We again calculate the probability distribution P(s) of the
level sphitting using Eq (6) The result 1s

Pls)— s s’
(s)= 2<S>2CXP neut 1
with average splitting

ks go\)L'i' §Osm ¢A

{s)=A 21 L—§g/sim¢py

(12)
We 1ecogmze Eq (11) as Wigner’s surmuse of iandom-
matiix theory

In Fig 3 we compare Eq (11) with numerical data The
agreement 1 excellent for a range of mean-fiee paths in the
quasiballistic regime The mean position of the splitted levels
fluctuates only to higher orders in L/l This makes 1t possible
to resolve the splitting 1n the mean density of states (see mset
m Fig 3)

III. LOCALIZED REGIME

A. NS junction

In order to go beyond the quasiballistic regime mnto the
localized 1egime L>! we write the quantization condition
for the Andieev levels 1 an NS junction 1 the form

1(e)i(—g)¥eta=1, (13)
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FIG 3 Dustribution of the splitting s of the first pair of Andreev
levels i an SNS junction with &;/L =024 The solid curves are our
theoretical expectation from Eq (11), the data ponts result from the
numerical solution of the BAG equatton The mset shows the nu-
merical data for the mean density of states

wheie r(g)=e'#® s the reflection amplitude of the disor-
dered noimal metal [The hole has reflection amplitude
r*(—e¢) ] In terms of the phase shifts we have

¢(e)— ¢(—8)

D(e)= 5

+du(e)=mn, n=0,l,

(14)

The density of states v(e)=2X,8(e —¢,) 1s related to the
scattering phase shifts by!>

L d Im 1 d(e+:10* 15

v(e)= - g Im Insm (e+:107), (15)

where 0 denotes a positive infinitesimal The 1maginary

part of the logatithm jumps by 7 whenever sin ®(g) changes

sign, hence 1t counts the number of levels below & The

derivative with respect to & then gives the density of states It
1s conventent to write Eq (15) as a Taylor seres,

1 d - 1 2imd
vie)= ;E $+ Immz=1 l’l_le R (16)

which converges because ®(e+:0%) 15 equvalent to
d(e)+.07

We seek the disordei-averaged density of states (v(g))
One way to proceed 1s by means of the Berezinsku
technique 1415 An alternative way, that we will follow here,
15 to start from the scaling equation’® for the probability
distribution  P(¢py) of the phase shift ¢y=35[p(e)
— ¢(—¢)] This equation has the form

oP d 2¢e + 1 9 2 p 17
FTARI Y S P B e ) (17)
The mitial condition 1s im; P ()= 6(by)
The first moment satisfies 6{ ¢y)/IL=2¢/fiv;, hence

2¢el
(18)
v

(dw)= %o~

F
Multiplication of Eq (17) by exp(2undgy) and integration
over ¢y fiom O to 7 yields a set of 1ecursive differential
equations'* for the moments R, = (e>""N),
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| EyL=024

e/A

FIG. 4 Mean density of states of an NS junction from the qua-
siballistic into the localized regime The sohid curves have been
computed from Eqs (16) and (19). The dashed curves are a numeri-
cal simulation of random disorder in the BdG equation.

dR,, m? die
=T(Rm+1+Rm—1_2Rm)+%;Ian’ (19)

oL

with the initial condition R,,(0)=1. We solve this set of
equations by truncating the vector (R{,R;, ... Ry,) at a suf-
ficiently large value of M ~400 and diagonalizing the corre-
sponding tridiagonal matrix. From Eq. (16) we then find the
mean density of states.

The result is shown in Fig. 4 for &, /L=10.24 and ratios
I/L ranging from the quasiballistic regime to the localized
regime. Agreement with the numerical solution of the BdG
equation is excellent over the whole range.

In the localized regime L3/ the individual Andreev levels
can no longer be distinguished in the mean density of states,
because the broadening of the levels becomes greater than
the spacing. In this regime we distinguish two energy ranges,
e>e, and s<s,, where ,= (v p/l)e M.

For energies higher than e, we may use the L— oo limit of
the distribution P( ¢y), obtained by setting the left-hand side
of Eq. (17) equal to zero. The resulting moments are

) o o \" 4el
llmRm=j doe™” —| , o=7—. (20)
P 0 o—iw

ﬁUF

We then calculate the mean density of states from Eq. (16),
with the result

2L 1
<V(8)>=7Tﬁvp+ wm+f(8)’ s>e,, (21)
4 »do| e 7 e (1 —e?®a)
f(s)—;ﬂzlm o T cr~iw—o-(1_621¢/\)—im )
(22)

The first term on the right-hand side of Eq. (21) is the energy
independent density of states v in an isolated normal metal.
The main effect of the superconductor for g, is an en-
hancement of the density of states close to the gap Ay of the
bulk superconductor (second term). The third term 1S nega-
tive for sufficiently small & and is a precursor of the soft gap
near the Fermi level. For ¢,<€/ and e<€Av /] the reduction
term f(e) can be simplified as
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fle)=~

where y=0.58 is Euler’s constant.

Near the Fermi level, for e<€e,, the mean density of
states vanishes as a result of the proximity to the supercon-
ductor. This “‘soft gap” appears no matter how strongly lo-
calized the normal metal is. The coefficients R,, may now be
treated as analytical functions of the parameter

21 lﬁvp «< <ﬁUF (23
. no———vy|, &,<¢€ T )

4ielm

7=-

2 Rm:R(Z)‘ (24)
ﬁUF

Taking the limit £ —0 we deduce from Eq. (17) the partial-
differential equation

l&R , R < ’s
o"_L-——Z _a‘ZT IIL, ( )

with initial condition lim;_,oR(z)= 1. This differential equa-
tion has been studied before in the theory of one-dimensional
localization,'®!” but not in connection with the proximity
effect. The result for the mean density of states, derived in

the Appendix, is given by
l e, ul | ul
™ T\ )

(26)
where u=Innfivp/el=Inme,/e+L/l. The leading logarith-
mic asymptotic of this expression in the limit e<g, has the
log-normal tail

(v(2)) S
g))= €X
g ’TT3/2fH)F P

’7ng
—8— , 8<8g. 27

{v(e))cexp| — Zzlnz

The same log-normal tail was found in Ref. 4 for a many-
channel diffusive conductor. In that case the factor I/L is
replaced by the Drude conductance of the normal metal and
the energy scale e, is replaced by the Thouless energy
#D/L? (with D the diffusion constant). In our single-channel
localized conductor neither the Drude conductance nor the
Thouless energy play a role.

B. SNS junction

In contrast with the quasiballistic regime, the NS and SNS
junctions are similar in the localized regime. (At least for the
case of zero current through the SNS junction considered
here.) Unfortunately, there exists no simple scaling equation
as Eq. (17) that can describe the density of states of the SNS
junction. We therefore rely on the numerical solution of the
BdG equation. In Fig. 5 we show that the mean density of
states of an NS junction of length L is close to that of an SNS
junction of length 2 L. This factor of 2 has an obvious expla-
nation in the ballistic regime [compare Eqgs. (4) and (9)], but
1t is remarkable that it still applies to the localized regime.

IV. CONCLUSION

In summary, we have calculated the effect of disorder on
the spectrum of Andreev levels in single-channel NS and
SNS junctions. The nonperturbative effects of localization in
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3 NS,L=2{=21& ——
SNS,L=4/=42
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FIG 5 Numerical calculation of the mean density of states of
an NS junction (solid) and SNS junction (dashed) in the nearly
localized regime The length of the SNS junction 1s twice that of the
NS junction (The weak oscillations are remnants of Andreev levels,
that will disappear 1f L/] 1s mcreased further )

the one-dimensional case can be studied exactly, at least
the NS geometty Out reseaich 1s of theoretical mterest in
view of recent studies of the subgap density of states beyond
mean-field theory,!™ but may also be of experimental mter-
est i view of recent plogress made 1n superconductor—
catbon-nanotube devices 18 1?

The 1esults detived mn the quasiballistic regime are not
1estricted to a one-dimensional geometry Andreev levels of
an SNS junction remain doubly degeneiate 1n higher dumen-
sions without disorder, and weak disoirder will still mduce a
splitting distributed according to the Wigner surmuse The
subgap density of states in the localized regime has been
studied 1n higher dimensions without disorder in Ref 4 The
log-notmal tail 1s a generic featuie of the lowest eneigies

ACKNOWLEDGMENTS

We thank Piet Biouwer for a crucial discussion at the
mutial stage of this project This reseaich was supported by
the “Nederlandse o1ganisatie voor Wetenschappelyk Onder-
zoek” (NWO) and by the “Stichting voor Fundamenteel
Onde1zoek der Materie” (FOM) M T and N AM thank the
visitors program at the Max-Planck-Institut fur Physik
komplexer Systeme, Diesden N AM also acknowledges
support by the “Ingenidrvidenskabehig Fond og G A Hage-
manns Mindefond ”

APPENDIX: DERIVATION OF THE LOG-NORMAL TAIL

The differential operator on the 1ight-hand side of Eq
(25) has eigenfunctions

Fo(2)=2zK (22), (A1)
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wheie K ,(z) 1s the modified Bessel function, such that

) 3* p2—1

e el == f,(2) (A2)
The solution to Eq (25) with the mitial condition
lim; gR(z)=1 15

® v smh( 7 v/2)

R(z)=f1(z)+ f
( U —o (VP +1)

Xexp[ — (v2+1)L/4l] (A3)

To obtain the density of states of the NS junction 1t 1s con-
venient to define the inverse Laplace tiansfoim

FON) = 1 w40t dz R < Ad

M= ) o el ) (A4

Fiom Eq (16) we find for e<g, the mean density of states

in terms of the function F,

41 el
(V(S))‘“-;T‘%;F(——)

WhUF

(2)

(A5)

Our amm 1s to find the asymptotic foim of F(A) 1n the Iimit
A—0 The mverse Laplace transfoim of the modified Bessel
functions m Eq (A3) can be found mm Ref 20 We obtan

F()\)=F0()\)—j dv N~ D expl — (12 +1)L141]

3w
IFI(E + —2—,1—4-11/,—4)\)
21— 1) (1v/2)
whete Fga(N)=exp(—4N) The mtegtand has a single pole
v=—1 1n the lower half of the complex plane and the 1es1due
from this pole cancels the tetm F Let us shift the contour
by the transformation v— v— (¢//L)In(1/\) and consider the
limit N <e %" In this hmat the contour 1s shifted through the
pole so that the term Fy 1s canceled Moreover, the hyper-
geometric function £, can be replaced by umt m this limit
Thus, we end up with the mtegral

1 { 1 L\?| (= 2
= —— _— —_—— —~v°Lidl
F(\) 2\/_exp[ 4L(ln)\ l) }f_wdve

l “1
i—lnh” (A7)
1

(A6)

X
2

The asymptotic form of this integral m the limut A<€e ™%/
can be found by evaluation of the expression n square
brackets n the pomt »=0 and calculation of the Gaussian
mtegral Usmg the asymptotic formula for the Euler gamma
function one obtamns the mean density of states given i Eq
(26)
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