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Andreev levels in a single-channel conductor
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We calculate the subgap density of states of a disordered single-channel normal metal connected to a
superconductor at one end (normal-metal-superconductor junction) or at both ends [superconductor-normal
metal-superconductor (SNS) junclion] The probabihty distnbution of the energy of a bound state (Andreev
level) is broadened by disorder In the SNS case the twofold degeneracy of the Andreev levels is removed by
disorder leading to a Splitting in addition to the broadenmg The distnbution of the Splitting is given precisely
by Wigner's surmise from random-matnx theory For strong disorder the mean density of states is largely
unaffected by the proximity to the superconductor, because of locahzation, except in a narrow energy region
near the Fermi level, where the density of states is suppressed with a log-normal tail
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I. INTRODUCTION

Several recent works have identified and studied devia-
tions from mean-field theory m the subgap density of states
of a normal metal m contact with a superconductor ^4 The
excttation spectrum below the gap of the bulk supercon-
ductor consists of a coheient superposition of electron and
hole excitations, coupled by Andreev reflection5 at the
normal-metal-superconductot (NS) mterface The energy of
these Andreev levels fluctuates from sample to sample, but
such mesoscopic fluctuations are ignored in mean-field
theory Because of these fluctuations, the ensemble averaged
density of states (ν(ε~)) acquires a tail that extends below the
mean-field gap, vamshmg only at the Fermi level (zero ex-
citation energy ε) The fluctuations become particularly large
if the size of the normal metal is greater than the locahzation
length

The purpose of this paper is to analyze an extreme case of
complete breakdown of mean-field theoiy, which is still suf-
ficiently simple that it can be solved exactly This is the case
of single-mode conduction through a disordered normal-
metal wire attached to a superconductor The locahzation
length in this geometry is equal to the elastic mean-free path
/, so that the wire crosses over with increasing length L fiom
the balhsttc regime duectly mto the localized regime—
without an mtermediate diffusive regime Perturbation theory
is possible m the quasibalhstic regime 1>L, but for KL an
essentially nonperturbative approach is lequired We will use
an appioach based on a scalmg equation (also known äs m-
vanant embedding) that has pioved its use befoie in different
contexts 6~9

We will contrast the quasibalhstic and localized legimes,
äs well äs the two geometnes with a single superconductmg
contact (NS junction) 01 with two supeiconducting contacts
at both ends of the noimal metal wue [superconductor-
noimal metal-supeiconductoi (SNS) junction] Ifweassume
that the two supeiconductois have the same phase, so that
there is no supeicuirent flowing thiough the noimal metal,
then the Andieev levels of the SNS junction aie doubly de-
generate m the absence of disoidei This degeneracy is bio-
ken by disoidei We find that foi weak disoidei the piobabil-
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ity distnbution of the Splitting is given precisely by Wigner's
surmise from random-matrix theory 10 (The spectra of cha-
otic Systems have spacings descnbed by Gaudm's distnbu-
tion, which is close to, but not identical with Wigner's
surmise 10)

In the localized regime the fluctuations of the Andreev
levels become greatei than their spacmg, and they can no
longer be distmguished m the mean density of states, which
decieases smoothly to zero on approachmg the Fermi level
The energy scale for this soft gap is exponentially small be-
cause of locahzation, given by eg = (fivp/l)e ~Lli The decay
of (ν(ε)) for s-^Sg has a log-normal form °cexp[
-(//4L)ln2(e/ei)] Such log-normal tails are charactenstic of
lare fluctuations in the localized regime11 and have appeared
recently in the context of the superconductor proximity
effect4

II. QUASIBALLISTIC REGIME

A. NS junction

The NS junction consists of a piece of normal metal of
length L connected at one end to a superconductor and
closed at the other end [see Fig l (a)] The width of the
normal metal is of the order of the Fermi wavelength KF,
such that there is a single propagatmg mode at the Fermi
energy EF We assume an ideal junction, without any tunnel
bairier and with EF much greater than the superconductmg

(a)

(h)

x=0 x=L

FIG l Geometiy of the NS and SNS juncüons
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gap ΔΟ An electron mcident on the supeiconductoi with
eneigy ε<Δ0 above the Fermi level is then Andieev re-
flected äs a hole at energy e below the Fermi level, with the
phase shift

-π/2<φΑ<0 (D

We wish to know at which ε a bound state (Andieev level)
will form m the normal metal

The electron and hole components of the wave function
i/f(x~) = [u(x),v(x)] satisfy the Bogohubov-de Gemies
(BdG) equation12

(2)

where H0= -(h2/2m)S2/dx2+V(x) is the Hamiltoman of
the normal metal (with disorder potential V) and Δ (JE)
= Δ00(-χ) is the superconductmg gap (which vamshes in
the noimal-metal region x>0) For narrow juncüons (width
much less than the supeiconductmg coherence length ξ0

= 1ίυρ/Δ0) the depletion of Δ(*) on the superconductmg
side may be neglected, hence the step function θ(—χ) At
the closed end x = L of the normal metal we impose the
boundary condition </f(L) = 0

In this section we address the quasibalhstic regime of
mean free path 1>L We can then treat V äs a small pertur-
bation on the ballistic bound states

&m[(kp+k)(x~L)]

sm[(kp-k)(x-L)-TTn]j'
0<x<L,

(3a)

sm[kFx — (kF+k)L]

sm[kFx—(kF—k)L—irn]

Xexp — -r-sm φΑ
so

x<0 (3b)

The normahzation constant is Ζ=[^-ϊξ0/5ΐηφΑ for krL
>1 (We denote kF=mvFlh = 2Trl\F ) The wave number
k = slfivF should satisfy the quantization condition

(4)2kL+φA =

The total number of Andreev levels within the gap is
for Ζ,ί>ςΌ (There remams one level if L<S£0 )

To first ordei in V the energy level is shifted by the matnx
element

δε= i dxV(x)[u(x)2-v(x)2] (5)
Jo

We assume a potential with a shoit-iange conelation, ex
pressed by

-δ(χ-χ'), (6)
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FIG 2 Mean density of states (m umts of VQ — 2L/Trhvr) of a
quasibalhstic NS junction The Gaussian with vanance given by Eq
(7) (solid curves) is compared to the numencal solution of the BdG
equation (dala pomts)

where ( ) Stands for the disorder aveiage It follows that
the distiibution of an Andreev level around its ballistic value
is a Gaussian with zero mean, (δε) = 0, and vanance

(7)
2/(2L- s o/sm<^)2

By way of illustiation, we show in Fig 2 the mean density of
states of an NS junction contaming three Andreev levels
(ίο/L = 024) with mean-free path 1=12L The Gaussian
given by Eq (7) agrees very well with the numencal solution
of the BdG equation (data pomts)

We bnefly explam the numencal method The BdG equa-
tion is solved numencally on a one-dimensional grid (lattice
constant a) by replacmg the Laplacian by finite differences
and tmncatmg the Hamiltoman matnx m the superconduct-
mg region, where the wave function is evanescent foi ener-
gies in the superconductmg gap The lesulting tight-bmding
model has nearest-neighbor coupling γ=Ά2/2ιηα2 (band-
width 4 γ) We set EF=y and Δ0 = 0 l γ, conespondmg to
λρ=6α and ξ0= 10-^3a The disorder is modeled by a ran-
dom on-site potential which is umformly distnbuted m the
mterval (—W,W) The mean-free path fiom the Born ap-
proximation, l = 3£F(4 γ- EF)a/W2, was found to fit well to
the prediction of one-dimensional scahng theory for the
mean mverse transmission piobability, (T~l) = ^[l
+ exp(2L/Z)], m the complete lange from the quasibalhstic to
the localized regime (The localization length ξ is related to
the mean-fiee path by ξ = 21, cf Ref 6) This allows foi a
parameter-fiee companson of the analytical and numencal
results foi the ensemble-averaged density of states

B. SNS junction

The quasibalhstic regime m an SNS junction [Fig l(b)] is
quahtatively diffeient fiom the NS case of the pieceding sec
tion The leason is the double degeneiacy of the unpeituibed
Andreev levels This degeneiacy exists if the phase of the
oidei paiametei m the two supeiconductoi s is the same,
which is what we assume m this papei Let us examme the
Splitting of the Andieev levels by the disoidei potential
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The SNS junction has energy gap

(8)

The quantization condition leads

A = ι^π, n = 0,1,2, (9)

There are Ώττξ§ Andieev levels (for Li*^), each level be-
mg doubly degeneiate We choose the two mdependent
eigenfunctions ψ±(χ) such that they cany zero cunent They
are given by

l / cos(kFx)
ψ+(χ) = —=\ ,, , x lexp

- 1 F -—3ΐηφΑ\, χ<0,
so /

(lOa)

<M*>=-pVZ

cos[(kF+k)x]
, 0<x<L,

(lOb)

JZi'\cos(kFx+TTn)l

and ψ-(χ) is obtamed by replacmg cosme by sine The noi-
mahzation constant is now Z' =Ι^—ξ0/5ΐη φΑ

Το first order m V the levels are splitted symmetncally
around the balhstic value, by an amount ± ^s The basis (10)
is chosen m such a way that the off-diagonal elements of the
perturbation vanish The shift of each level can then be cal
culated from Eq (5) usmg the correspondmg eigenfunction
We agam calculate the probabihty distnbution P(s) of the
level Splitting usmg Eq (6) The result is

P ( s ) =

with average Splitting

2(s)2

TTS'

2l 1> —

(H)

(12)

We iccognize Eq (11) äs Wigner's surmise of landom-
maü ix theory 10

In Fig 3 we compare Eq (11) with numencal data The
agreement is excellent for a ränge of mean-fiee paths m the
quasibalhstic regime The mean position of the splitted levels
fluctuates only to higher Orders in Lll This makes it possible
to resolve the Splitting m the mean density of states (see inset
m Fig 3)

III. LOCALIZED REGIME

A. NS junction

In oidei to go beyond the quasibalhstic regime mto the
localized legime L>1 we wnte the quantization condition
foi the Andieev levels m an NS junction m the foim

2ιφλ.

FIG 3 Distribution of the Splitting s of the first pair of Andreev
levels m an SNS junction with ξ0/1< = 0 24 The solid curves are our
theoretical expectation from Eq (11), the data pomts result from the
numencal solution of the BdG equation The inset shows the nu-
mencal data for the mean density of states

wheie r(8) = e"^(e) is the reflection amphtude of the disor-
dered noimal metal [The hole has reflection amphtude
r*( — ε) ] In terms of the phase shifts we have

φ(ε)-φ(-ε)

(14)

is related to the

(15)

The density of states
scattenng phase shifts by13

l d
V(B) = -j-Im

-π- de

where 0+ denotes a positive infinitesimal The imagmary
part of the logaiithm jumps by π whenever sin Φ(ε) changes
sign, hence it counts the number of levels below ε The
derivative with respect to ε then gives the density of states It
is convement to wnte Eq (15) äs a Taylor senes,

ιΣ -
m=i m

(16)

which converges because Φ(ε + ίΟ + ) is eqmvalent to
Φ(ε) + ίΟ +

We seek the disoidei-averaged density of states ( ν ( ε ) )
One way to proceed is by means of the Berezmskn
technique 1415 An alternative way, that we will follow here,
is to start from the scahng equation78 for the probabihty
distnbution Ρ(φ^) of the phase shift φΝ=
— φ( — ε)] This equation has the form

dP 2ε l d
(17)

The initial condition is Ιιιηι

The first moment satisfies ρ·, hence

2eL

hv F

(18)

l,

Multiphcation of Eq (17) by &χρ(2ιηφΝ) and integiation
ovei φΝ fiom 0 to π yields a set of lecursive differential

(13) equations14 foi the moments Κ,,, = (β2""φΝ),
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FIG. 4 Mean density of states of an NS junction from the qua-
siballisüc into the localized regime The solid curves have been
computed from Eqs (16) and (19). The dashed curves are a numen-
cal Simulation of random disorder m the BdG equation.

dRm
~

m 4/ε
—mRm, (19)

with the initial condition Rm(0) = l . We solve this set of
equations by truncating the vector (/?i ,R2 , · · · R M) at a suf-
ficiently large value of M «==400 and diagonalizing the corre-
sponding tridiagonal matrix. From Eq. (16) we then find the
mean density of states.

The result is shown in Fig. 4 for ξ0 1 L = 0.24 and ratios
U L ranging from the quasiballistic regime to the localized
regime. Agreement with the numerical solution of the BdG
equation is excellent over the whole ränge.

In the localized regime Vs>l the individual Andreev levels
can no longer be distinguished in the mean density of states,
because the broadening of the levels becomes greater than
the spacing. In this regime we distinguish two energy ranges,
8>eg and e<Seg , where sg = (fiv Fll)e~ul.

For energies higher than eg we may use the L— >co limit of
the distribution P( φΝ) , obtained by setting the left-hand side
of Eq. (17) equal to zero. The resulting moments are

lim/?m= dae~
i.-»« -10 σ— ιω

4εΙ

ΐιυF'
(20)

We then calculate the mean density of states from Eq. (16),
with the result

21
, (21)

de' σ-ίω •ιω
(22)

The first term on the right-hand side of Eq. (21) is the energy
independent density of states VQ in an isolated normal metal.
The main effect of the superconductor for e>sg is an en-
hancement of the density of states close to the gap Δ0 of the
bulk superconductor (second term). The third term is nega-
tive for sufficiently small ε and is a precursor of the soft gap
near the Perm i level. For ξ^Ι and B^hvFll the reduction
term/(ε) can be simplified äs

2l l hvF
— mir~r\ 8ε/

hv p
(23)

where y«=0.58 is Euler's constant.
Near the Fermi level, for ε<εί?, the mean density of

states vanishes äs a result of the proximity to the supercon-
ductor. This "soft gap" appears no matter how strongly lo-
calized the normal metal is. The coefficients Rm may now be
treated äs analytical functions of the parameter

4ielm

hv ρ- m = R ( z ) . (24)

Taking the limit ε->0 we deduce from Eq. (17) the partial-
differential equation

dR ,d2R
(25)

with initial condition lim^_,o^(z)= l · This differential equa-
tion has been studied before in the theory of one-dimensional
localization,16'17 but not in connection with the proximity
effect. The result for the mean density of states, derived in
the Appendix, is given by

2l
-exp

ul

"2L

ul

4L ε

(26)

where Η = ΐΆττΙίυΓ/εΙ—1\\'πε5/ε+υΐ. The leading logarith-
mic asymptotic of this expression in the limit ε<ϊ ε8 has the
log-normal tail

(27)

The same log-normal tail was found in Ref. 4 for a many-
channel diffusive conductor. In that case the factor l/L is
replaced by the Drude conductance of the normal metal and
the energy scale eg is replaced by the Thouless energy
f i D I L 2 (with D the diffusion constant). In our single-channel
localized conductor neither the Drude conductance nor the
Thouless energy play a role.

B. SNS junction

In contrast with the quasiballistic regime, the NS and SNS
junctions are similar in the localized regime. (At least for the
case of zero current through the SNS junction considered
here.) Unfortunately, there exists no simple scaling equation
äs Eq. (17) that can describe the density of states of the SNS
junction. We therefore rely on the numerical solution of the
BdG equation. In Fig. 5 we show that the mean density of
states of an NS junction of length L is close to that of an SNS
junction of length 2L. This factor of 2 has an obvious expla-
nation in the ballistic regime [compare Eqs. (4) and (9)], but
it is remarkable that it still applies to the localized regime.

IV. CONCLUSION

In summary, we have calculated the effect of disorder on
the spectrum of Andreev levels in single-channel NS and
SNS junctions. The nonperturbative effects of localization in
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FIG 5 Numencal calculation of the mean dcnsity of states of
an NS junction (solid) and SNS junction (dashed) m the nearly
locahzed regime The length of the SNS junction is twice that of the
NS junction (The weak oscillations are remnants of Andreev levels,
that will disappear if Lll is mcreased further)

the one-dimensional case can be studied exactly, at least m
the NS geomeüy Oui reseaich is of theoietical mietest m
view of recent studies of the subgap density of states beyond
mean-field theory,1"4 but may also be of expenmental miet-
est m view of recent piogress made in superconductor-
catbon-nanotube devices18

The icsults denved in the quasibalhstic regime are nol
lesüicted to a one-dimensional geometry Andreev levels of
an SNS junction remam doubly degeneiate m htghei dimen-
sions without disordei, and weak disoidei will still mduce a
Splitting distnbuted accordmg to the Wignei suimise The
subgap density of states in the locahzed regime has been
studied in highet dimensions without disordei m Ref 4 The
log-notmal tail is a genenc featuie of the lowest eneigies
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APPENDIX: DERIVATION OF THE LOG-NORMAL TAIL

The diffeiential operator on the nght-hand side of Eq
(25) has eigenfunctions

/„(z) = 2 (AI)

wheie Kp(z) is the modified Bessel function, such that

P
2-\

,ω=~-/ρω (Α2)
The solution to Eq (25) with the initial condition

) = 1 is

vsinh(7rv/2)
f : v ( z )

Xexp[-(i/ 2+l)L/4/] (A3)
To obtam the density of states of the NS junction it is con-
vement to define the mverse Laplace üansfoim

l 0+0+ dz
2 m J _ ,

Fiom Eq (16) we find for
in terms of the function F,

4l

the mean density of states

εΐ

* M * l (A5>πηυ p \TrnvFj
Our aim is to find the asymptotic foim of F(\) m the limit
λ—>0 The mverse Laplace transfoim of the modified Bessel
functions in Eq (A3) can be found m Ref 20 We obtam

F(X)=F0(\)~

iv

X p= , (Α6)
2νπ(1-ζι>)Γ(ιν/2)

wheie F0(X) = exp(-4\) The mtegiand has a single pole
v= — ι in the lower half of the complex plane and the icsidue
from this pole cancels the teim F0 Let us shift the contour
by the transformation v—* v— (z//L)ln(l/X) and consider the
limit \<^e'LI1 In this limit the contoui is shifted through the
pole so that the term F0 is canceled Moreover, the hyper-
geometnc function :F { can be replaced by unit in this limit
Thus, we end up with the integral

1 / / l _ Z / 2

'4L 1 ηλ~7

X ιν-ί--1ηλ
iv

J -

l

dve~v*LM

-1

(A7)

ll1The asymptotic foim of this integral in the limit
can be found by evaluation of the expression m square
biackets in the pomt v=Q and calculation of the Gaussian
integral Usmg the asymptotic fotmula foi the Eulei gamma
function one obtams the mean density of states given in Eq
(26)
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