95 research outputs found

    What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases.

    Get PDF
    Each individual is provided with a unique gut microbiota profile that plays many specific functions in host nutrient metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Gut microbiota are composed of different bacteria species taxonomically classified by genus, family, order, and phyla. Each human's gut microbiota are shaped in early life as their composition depends on infant transitions (birth gestational date, type of delivery, methods of milk feeding, weaning period) and external factors such as antibiotic use. These personal and healthy core native microbiota remain relatively stable in adulthood but differ between individuals due to enterotypes, body mass index (BMI) level, exercise frequency, lifestyle, and cultural and dietary habits. Accordingly, there is not a unique optimal gut microbiota composition since it is different for each individual. However, a healthy host\u207bmicroorganism balance must be respected in order to optimally perform metabolic and immune functions and prevent disease development. This review will provide an overview of the studies that focus on gut microbiota balances in the same individual and between individuals and highlight the close mutualistic relationship between gut microbiota variations and diseases. Indeed, dysbiosis of gut microbiota is associated not only with intestinal disorders but also with numerous extra-intestinal diseases such as metabolic and neurological disorders. Understanding the cause or consequence of these gut microbiota balances in health and disease and how to maintain or restore a healthy gut microbiota composition should be useful in developing promising therapeutic interventions

    Determinants of frontline tyrosine kinase inhibitor choice for patients with chronic-phase chronic myeloid leukemia: A study from the Registro Italiano LMC and Campus CML

    Get PDF
    BackgroundImatinib, dasatinib, and nilotinib are tyrosine kinase inhibitors (TKIs) approved in Italy for frontline treatment of chronic-phase chronic myeloid leukemia (CP-CML). The choice of TKI is based on a combined evaluation of the patient's and the disease characteristics. The aim of this study was to analyze the use of frontline TKI therapy in an unselected cohort of Italian patients with CP-CML to correlate the choice with the patient's features. MethodsA total of 1967 patients with CP-CML diagnosed between 2012 and 2019 at 36 centers throughout Italy were retrospectively evaluated; 1089 patients (55.4%) received imatinib and 878 patients (44.6%) received a second-generation (2G) TKI. ResultsSecond-generation TKIs were chosen for most patients aged <45 years (69.2%), whereas imatinib was used in 76.7% of patients aged >65 years (p < .001). There was a predominant use of imatinib in intermediate/high European long-term survival risk patients (60.0%/66.0% vs. 49.7% in low-risk patients) and a limited use of 2G-TKIs in patients with comorbidities such as hypertension, diabetes, chronic obstructive pulmonary disease, previous neoplasms, ischemic heart disease, or stroke and in those with >3 concomitant drugs. We observed a greater use of imatinib (61.1%) in patients diagnosed in 2018-2019 compared to 2012-2017 (53.2%; p = .002). In multivariable analysis, factors correlated with imatinib use were age > 65 years, spleen size, the presence of comorbidities, and & GE;3 concomitant medications. ConclusionsThis observational study of almost 2000 cases of CML shows that imatinib is the frontline drug of choice in 55% of Italian patients with CP-CML, with 2G-TKIs prevalently used in younger patients and in those with no concomitant clinical conditions. Introduction of the generic formulation in 2018 seems to have fostered imatinib use

    Treatment discontinuation following low-dose TKIs in 248 chronic myeloid leukemia patients: Updated results from a campus CML real-life study

    Get PDF
    TKIs long-term treatment in CML may lead to persistent adverse events (AEs) that can promote relevant morbidity and mortality. Consequently, TKIs dose reduction is often used to prevent AEs. However, data on its impact on successful treatment-free remission (TFR) are quite scarce. We conducted a retrospective study on the outcome of CML subjects who discontinued low-dose TKIs from 54 Italian hematology centers participating in the Campus CML network. Overall, 1.785 of 5.108 (35.0%) regularly followed CML patients were treated with low-dose TKIs, more frequently due to relevant comorbidities or AEs (1.288, 72.2%). TFR was attempted in 248 (13.9%) subjects, all but three while in deep molecular response (DMR). After a median follow-up of 24.9 months, 172 (69.4%) patients were still in TFR. TFR outcome was not influenced by gender, Sokal/ELTS risk scores, prior interferon, number and last type of TKI used prior to treatment cessation, DMR degree, reason for dose reduction or median TKIs duration. Conversely, TFR probability was significantly better in the absence of resistance to any prior TKI. In addition, patients with a longer DMR duration before TKI discontinuation (i.e., >6.8 years) and those with an e14a2 BCR::ABL1 transcript type showed a trend towards prolonged TFR. It should also be emphasized that only 30.6% of our cases suffered from molecular relapse, less than reported during full-dose TKI treatment. The use of low-dose TKIs does not appear to affect the likelihood of achieving a DMR and thus trying a treatment withdrawal, but might even promote the TFR rate

    Risk of progression in chronic phase-chronic myeloid leukemia patients eligible for tyrosine kinase inhibitor discontinuation: Final analysis of the TFR-PRO study

    Get PDF
    Disease progression to accelerated/blast phase (AP/BP) in patients with chronic phase chronic myeloid leukemia (CP-CML) after treatment discontinuation (TD) has never been systematically reported in clinical trials. However, recent reports of several such cases has raised concern. To estimate the risk of AP/BP among TD-eligible patients, we conducted TFR-PRO, a cohort retro-prospective study: 870 CP-CML patients eligible for TD formed a discontinuation cohort (505 patients) and a reference one (365 patients). The primary objective was the time adjusted rate (TAR) of progression in relation to TD. Secondary endpoints included the TAR of molecular relapse, that is, loss of major molecular response (MMR). With a median follow up of 5.5 years and 5188.2 person-years available, no events occurred in the TD cohort. One event of progression was registered 55 months after the end of TD, when the patient was contributing to the reference cohort. The TAR of progression was 0.019/100 person-years (95% CI [0.003-0.138]) in the overall group; 0.0 (95% CI [0-0.163]) in the discontinuation cohort; and 0.030 (95% CI [0.004-0.215]) in the reference cohort. These differences are not statistically significant. Molecular relapses occurred in 172/505 (34.1%) patients after TD, and in 64/365 (17.5%) patients in the reference cohort, p < .0001. Similar rates were observed in TD patients in first, second or third line of treatment. CML progression in patients eligible for TD is rare and not related to TD. Fears about the risk of disease progression among patients attempting TD should be dissipated

    Managing chronic myeloid leukemia for treatment-free remission: A proposal from the GIMEMA CML WP

    Get PDF
    Several papers authored by international experts have proposed recommendations on the management of BCR-ABL11 chronic myeloid leukemia (CML). Following these recommendations, survival of CML patients has become very close to normal. The next, ambitious, step is to bring as many patients as possible into a condition of treatment-free remission (TFR). The Gruppo Italiano Malattie EMatologiche dell'Adulto (GIMEMA; Italian Group for Hematologic Diseases of the Adult) CML Working Party (WP) has developed a project aimed at selecting the treatment policies that may increase the probability of TFR, taking into account 4 variables: the need for TFR, the tyrosine kinase inhibitors (TKIs), the characteristics of leukemia, and the patient. A Delphi-like method was used to reach a consensus among the representatives of 50 centers of the CML WP. A consensus was reached on the assessment of disease risk (EUTOS Long Term Survival [ELTS] score), on the definition of the most appropriate age boundaries for the choice of first-line treatment, on the choice of the TKI for first-line treatment, and on the definition of the responses that do not require a change of the TKI (BCR-ABL1 ≤10% at 3 months, ≤1% at 6 months, ≤0.1% at 12 months, ≤0.01% at 24 months), and of the responses that require a change of the TKI, when the goal is TFR (BCR-ABL1 >10% at 3 and 6 months, >1% at 12 months, and >0.1% at 24 months). These suggestions may help optimize the treatment strategy for TFR
    corecore