8,043 research outputs found

    Making metaethics work for AI: realism and anti-realism

    Get PDF
    Engineering an artificial intelligence to play an advisory role in morally charged decision making will inevitably introduce meta-ethical positions into the design. Some of these positions, by informing the design and operation of the AI, will introduce risks. This paper offers an analysis of these potential risks along the realism/anti-realism dimension in metaethics and reveals that realism poses greater risks, but, on the other hand, anti-realism undermines the motivation for engineering a moral AI in the first place

    Probabilistic completeness of RRT for geometric and kinodynamic planning with forward propagation

    Full text link
    The Rapidly-exploring Random Tree (RRT) algorithm has been one of the most prevalent and popular motion-planning techniques for two decades now. Surprisingly, in spite of its centrality, there has been an active debate under which conditions RRT is probabilistically complete. We provide two new proofs of probabilistic completeness (PC) of RRT with a reduced set of assumptions. The first one for the purely geometric setting, where we only require that the solution path has a certain clearance from the obstacles. For the kinodynamic case with forward propagation of random controls and duration, we only consider in addition mild Lipschitz-continuity conditions. These proofs fill a gap in the study of RRT itself. They also lay sound foundations for a variety of more recent and alternative sampling-based methods, whose PC property relies on that of RRT

    RNA packaging motor: From structure to quantum mechanical modelling and sequential-stochastic mechanism

    Get PDF
    The bacteriophages of the Cystoviridae family package their single stranded RNA genomic precursors into empty capsid (procapsids) using a hexameric packaging ATPase motor (P4). This molecular motor shares sequence and structural similarity with RecA-like hexameric helicases. A concerted structural, mutational and kinetic analysis helped to define the mechanical reaction coordinate, i.e. the conformational changes associated with RNA translocation. The results also allowed us to propose a possible scheme of coupling between ATP hydrolysis and translocation which requires the cooperative action of three consecutive subunits. Here, we first test this model by preparing hexamers with defined proportions of wild type and mutant subunits and measuring their activity. Then, we develop a stochastic kinetic model which accounts for the catalytic cooperativity of the P4 hexamer. Finally, we use the available structural information to construct a quantum-chemical model of the chemical reaction coordinate and obtain a detailed description of the electron density changes during ATP hydrolysis. The model explains the results of the mutational analyses and yields new insights into the role of several conserved residues within the ATP binding pocket. These hypotheses will guide future experimental work

    Hydrogen-bonded liquid crystals with broad-range blue phases

    Get PDF
    We report a modular supramolecular approach for the investigation of chirality induction in hydrogen-bonded liquid crystals. An exceptionally broad blue phase with a temperature range of 25 °C was found, which enabled its structural investigation by solid state 19F-NMR studies and allowed us to report order parameters of the blue phase I for the first time

    A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization - an ADM formulation

    Full text link
    This article studies a numerical relativity approach to the initial value problem in Anti-de Sitter spacetime relevant for dual non-equilibrium evolution of strongly coupled non-Abelian plasma undergoing Bjorken expansion. In order to use initial conditions for the metric obtained in arXiv:0906.4423 we introduce new, ADM formalism-based scheme for numerical integration of Einstein's equations with negative cosmological constant. The key novel element of this approach is the choice of lapse function vanishing at fixed radial position, enabling, if needed, efficient horizon excision. Various physical aspects of the gauge theory thermalization process in this setup have been outlined in our companion article arXiv:1103.3452. In this work we focus on the gravitational side of the problem and present full technical details of our setup. We discuss in particular the ADM formalism, the explicit form of initial states, the boundary conditions for the metric on the inner and outer edges of the simulation domain, the relation between boundary and bulk notions of time, the procedure to extract the gauge theory energy-momentum tensor and non-equilibrium apparent horizon entropy, as well as the choice of point for freezing the lapse. Finally, we comment on various features of the initial profiles we consider.Comment: 25 pages, 9 figures, 1 table; see also the companion article arXiv:1103.3452; v2: typos fixed; v3: references added and updated, publishe

    Designing a VAR2CSA-based vaccine to prevent placental malaria

    Get PDF
    AbstractPlacental malaria (PM) due to Plasmodium falciparum is a major cause of maternal, fetal and infant mortality, but the mechanisms of pathogenesis and protective immunity are relatively well-understood for this condition, providing a path for vaccine development. P. falciparum parasites bind to chondroitin sulfate A (CSA) to sequester in the placenta, and women become resistant over 1–2 pregnancies as they acquire antibodies that block adhesion to CSA. The protein VAR2CSA, a member of the PfEMP1 variant surface antigen family, mediates parasite adhesion to CSA, and is the leading target for a vaccine to prevent PM. Obstacles to PM vaccine development include the large size (∼350kD), high cysteine content, and sequence variation of VAR2CSA. A number of approaches have been taken to identify the combination of VAR2CSA domains and alleles that can induce broadly active antibodies that block adhesion of heterologous parasite isolates to CSA. This review summarizes these approaches, which have examined VAR2CSA fragments for binding activity, antigenicity with naturally acquired antibodies, and immunogenicity in animals for inducing anti-adhesion or surface-reactive antibodies. Two products are expected to enter human clinical studies in the near future based on N-terminal VAR2CSA fragments that have high binding affinity for CSA, and additional proteins preferentially expressed by placental parasites are also being examined for their potential contribution to a PM vaccine

    Great Minds Think Alike? Spatial Search Processes Can Be More Idiosyncratic When Guided by More Accurate Information

    Get PDF
    Existing research demonstrates that pre-decisional information sampling strategies are often stablewithin a given person while varying greatly across people. However, it remains largely unknown whatdrives these individual differences, that is, why in some circumstances we collect information moreidiosyncratically. In this brief report, we present a pre-registered online study of spatial search. Usinga novel technique that combines machine-learning dimension reduction and sequence alignment algo-rithms, we quantify the extent to which the shape and temporal properties of a search trajectory areidiosyncratic. We show that this metric increases (trajectories become more idiosyncratic) when a per-son is better informed about the likely location of the search target, while poorly informed individualsseem more likely to resort to default search routines determined bottom-up by the properties of thesearch field. This shows that when many people independently attempt to solve a task in a similar way,they are not necessarily “onto something.”publishedVersionPaid open acces
    corecore