287 research outputs found

    Singular perturbations and asymptotic expansions for SPDEs with an application to term structure models

    Get PDF
    We study the dependence of mild solutions to linear stochastic evolution equations on Hilbert space driven by Wiener noise, with drift having linear part of the type A+εG, on the parameter ε. In particular, we study the limit and the asymptotic expansions in powers of ε of these solutions, as well as of functionals thereof, as ε→0, with good control on the remainder. These convergence and series expansion results are then applied to a parabolic perturbation of the Musiela SPDE of mathematical finance modeling the dynamics of forward rates

    Feedback optimal control for stochastic Volterra equations with completely monotone kernels.

    Get PDF
    In this paper we are concerned with a class of stochastic Volterra integro-dierential problems with completely monotone kernels, where we assume that the noise enters the system when we introduce a control. We start by reformulating the state equation into a semilinear evolution equation which can be treated by semigroup methods. The application to optimal control provide other interesting result and require a precise descriprion of the properties of the generated semigroup. The rst main result of the paper is the proof of existence and uniqueness of a mild solution for the corresponding Hamilton-Jacobi-Bellman (HJB) equation. The main technical point consists in the dierentiability of the BSDE associated with the reformulated equation with respect to its initial datum x

    Development of scale down models for perfusion bioreactor medium optimization

    Get PDF
    Due to the complex nature of balancing \u3e50 individual media components, the development and optimization of bioreactor medium for high performing perfusion bioreactors is a resource intensive, multivariate problem that greatly benefits from the availability of predictive high through-put scale-down models that simulate the bioreactor system. For that purpose, both a 10 mL long-term block model and 50 mL shaker tube model were developed and optimized to settings that balance oxygen transfer, culture health, and productivity. The long-term block model was limited by the volume needed for culture sampling; as a result, the shaker tube model was developed with a 7.5x increase in working volume. This shaker tube model was then applied to adequately characterize cell nutrient consumption profiles and subsequently inform medium development through multivariate design of experiments (DOE). Within two rounds of studies in the scale-down models, Regeneron’s first-generation perfusion medium formulation achieved approximately 100% increase in productivity compared to the initial medium. The improved nutrient strategy optimized in shaker tubes translated to several cell lines in the benchtop and pilot scale bioreactor perfusion system, indicating the predictive capabilities of the small-scale model. These results highlight the benefits of using small-scale models to shorten development time for perfusion process implementation

    Bisphosphonate Functionalized Gadolinium Oxide Nanoparticles Allow Long-Term MRI/CT Multimodal Imaging of Calcium Phosphate Bone Cement

    Get PDF
    Direct in vivo monitoring of bioconstructs using noninvasive imaging modalities such as magnetic resonance imaging (MRI) or computed tomography (CT) is not possible for many materials. Calcium phosphate–based composites (CPCs) that are applicable to bone regeneration are an example where the materials have poor MRI and CT contrast; hence, they are challenging to detect in vivo. In this study, a CPC construct is designed with gadolinium-oxide nanoparticles incorporated to act as an MRI/CT multimodal contrast agent. The gadolinium(III) oxide nanoparticles are synthesized via the polyol method and surface functionalized with a bisphosphonate (BP) derivative to give a construct (gadolinium-based contrast agents (GBCAs)-BP) with strong affinity toward calcium phosphate. The CPC-GBCAs-BP functional material is longitudinally monitored after in vivo implantation in a condyle defect rat model. The synthetic method developed produces nanoparticles that are stable in aqueous solution (hydrodynamic diameter 70 nm) with significant T1and T2relaxivity demonstrated in both clinical 3 T and preclinical 11.7 T MRI systems. The combination of GBCAs-BP nanoparticles with CPC gives an injectable material with handling properties that are suitable for clinical applications. The BP functionalization prolongs the residence of the contrast agent within the CPC to allow long-term follow-up imaging studies. The useful contrast agent properties combined with biological compatibility indicate further investigation of the novel bone substitute hybrid material toward clinical application

    A wireless sensor network-based approach to large-scale dimensional metrology

    No full text
    In many branches of industry, dimensional measurements have become an important part of the production cycle, in order to check product compliance with specifications. This task is not trivial especially when dealing with largescale dimensional measurements: the bigger the measurement dimensions are, the harder is to achieve high accuracies. Nowadays, the problem can be handled using many metrological systems, based on different technologies (e.g. optical, mechanical, electromagnetic). Each of these systems is more or less adequate, depending upon measuring conditions, user's experience and skill, or other factors such as time, cost, accuracy and portability. This article focuses on a new possible approach to large-scale dimensional metrology based on wireless sensor networks. Advantages and drawbacks of such approach are analysed and deeply discussed. Then, the article briefly presents a recent prototype system - the Mobile Spatial Coordinate-Measuring System (MScMS-II) - which has been developed at the Industrial Metrology and Quality Laboratory of DISPEA - Politecnico di Torino. The system seems to be suitable for performing dimensional measurements of large-size objects (sizes on the order of several meters). Owing to its distributed nature, the system - based on a wireless network of optical devices - is portable, fully scalable with respect to dimensions and shapes and easily adaptable to different working environments. Preliminary results of experimental tests, aimed at evaluating system performance as well as research perspectives for further improvements, are discusse

    The success-index: an alternative approach to the h-index for evaluating an individual's research output

    Get PDF
    Among the most recent bibliometric indicators for normalizing the differences among fields of science in terms of citation behaviour, Kosmulski (J Informetr 5(3):481-485, 2011) proposed the NSP (number of successful paper) index. According to the authors, NSP deserves much attention for its great simplicity and immediate meaning— equivalent to those of the h-index—while it has the disadvantage of being prone to manipulation and not very efficient in terms of statistical significance. In the first part of the paper, we introduce the success-index, aimed at reducing the NSP-index's limitations, although requiring more computing effort. Next, we present a detailed analysis of the success-index from the point of view of its operational properties and a comparison with the h-index's ones. Particularly interesting is the examination of the success-index scale of measurement, which is much richer than the h-index's. This makes success-index much more versatile for different types of analysis—e.g., (cross-field) comparisons of the scientific output of (1) individual researchers, (2) researchers with different seniority, (3) research institutions of different size, (4) scientific journals, etc

    Hand rehabilitation with sonification techniques in the subacute stage of stroke

    Get PDF
    After a stroke event, most survivors suffer from arm paresis, poor motor control and other disabilities that make activities of daily living difficult, severely affecting quality of life and personal independence. This randomized controlled trial aimed at evaluating the efficacy of a music-based sonification approach on upper limbs motor functions, quality of life and pain perceived during rehabilitation. The study involved 65 subacute stroke individuals during inpatient rehabilitation allocated into 2 groups which underwent usual care dayweek) respectively of standard upper extremity motor rehabilitation or upper extremity treatment with sonification techniques. The Fugl-Meyer Upper Extremity Scale, Box and Block Test and the Modified Ashworth Scale were used to perform motor assessment and the McGill Quality of Life-it and the Numerical Pain Rating Scale to assess quality of life and pain. The assessment was performed at baseline, after 2 weeks, at the end of treatment and at follow-up (1 month after the end of treatment). Total scores of the Fugl-Meyer Upper Extremity Scale (primary outcome measure) and hand and wrist sub scores, manual dexterity scores of the affected and unaffected limb in the Box and Block Test, pain scores of the Numerical Pain Rating Scale (secondary outcomes measures) significantly improved in the sonification group compared to the standard of care group (time*group interaction < 0.05). Our findings suggest that music-based sonification sessions can be considered an effective standardized intervention for the upper limb in subacute stroke rehabilitation
    corecore