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Abstract

We study the dependence of mild solutions to linear stochastic evolution equations on Hilbert space 
driven by Wiener noise, with drift having linear part of the type A + εG, on the parameter ε. In particular, 
we study the limit and the asymptotic expansions in powers of ε of these solutions, as well as of functionals 
thereof, as ε → 0, with good control on the remainder. These convergence and series expansion results 
are then applied to a parabolic perturbation of the Musiela SPDE of mathematical finance modeling the 
dynamics of forward rates.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Consider the family of stochastic evolution equations

duε = (A + εG)uε dt + α dt + B dW, uε(0) = u0, (1)

set in a Hilbert space H and indexed by ε > 0, where A and G are linear maximal dissipative 
operators on H such that A + εG is also maximal dissipative, α and B are coefficients satisfying 
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suitable measurability, integrability and regularity conditions, and W is a cylindrical Wiener 
process. Precise assumptions on the data of the problem are given below.

Our main goal is to obtain an expansion of the difference uε − u as a polynomial in ε plus 
a remainder term, where uε and u are the unique mild solutions to (1) with ε > 0 and ε = 0, 
respectively. Results in this sense are obtained assuming that the semigroups generated by A and 
G commute. As a first step, we show that uε converges to u as ε → 0, also in the case where α
and B are (random, time-dependent) Lipschitz continuous functions of the unknown, in suitable 
norms implying the convergence in probability uniformly on compact intervals in time. For such 
convergence result to hold it is enough that the resolvent of A + εG converges to the resolvent 
of A as ε → 0 in the strong operator topology, without any commutativity assumption. Suffi-
cient conditions for the convergence of operators in the strong resolvent sense have been largely 
studied (see, e.g., [9] and references therein) and can be readily applied to obtain convergence 
results for solutions to stochastic evolution equations. On the other hand, expansions in power 
series of uε − u are considerably harder to obtain. In fact, it is well known that solutions to 
singularly perturbed equations, also in the simpler setting of deterministic ODEs, do not admit 
series expansions in the perturbation parameter. This phenomenon appears also in the class of 
stochastic equations studied here, as it is quite obvious. This is essentially the reason behind the 
commutativity assumption on the semigroups generated by A and G, as well as on the regu-
larity conditions on the initial datum u0 and on the coefficients α and B (see §4 below, where 
asymptotic expansion results are obtained also for functionals of uε).

As an application of the abstract results, we consider a singularly perturbed transport equa-
tion on R where, roughly speaking, A and G are the first and second derivative, respectively. 
This equation can be seen as a singular perturbation of an extension of Musiela’s SPDE from a 
weighted Sobolev space on R+ to the corresponding one on R. The motivation for considering 
this problem comes from the interesting article [7], where the author argues that second-order 
parabolic SPDEs reproduce many stylized empirical properties of forward curves. On the other 
hand, if forward rates satisfy a Heath-Jarrow-Morton dynamics, the differential operator in the 
drift of the corresponding SPDE must be of first order. It is then natural to consider singular 
perturbations of the (first-order) Musiela SPDE by second-order differential operators and to 
look for conditions implying uniform convergence of the “perturbed” forward rates, as well as 
of implied bond prices, to the corresponding “unperturbed” forward rates and bond prices, as 
well as a more precise description of the dependence of the pricing error on the “size” of the 
perturbation. Results in this regard are obtained in the form of asymptotic expansions in ε of the 
solution uε to a second-order perturbation of a suitable extension of the Musiela SPDE, as well 
as of functionals thereof.

The rest of the text is organized as follows. In §2 we introduce notation, we recall basic results 
from semigroup theory, and we establish some inequalities and identities for classes of stochastic 
convolutions. In §3 we show that a commutativity assumption between the semigroups generated 
by A and G implies that the closure of A + εG converges to A in the strong resolvent sense as 
ε → 0. This allows, thanks to a general convergence result for mild solutions to stochastic evolu-
tion equations, to deduce the convergence of uε to u in a suitable norm. Under further regularity 
assumptions on u0, α and B , expansions of the difference uε − u and of functionals thereof as 
power series in ε are obtained in §4, which is the core of the work. Finally, the applications 
described above to Musiela’s SPDE are developed in §5.
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2. Preliminaries

Throughout this section we shall use E and F to denote two Banach spaces. The expression 
E ↪→ F means that E is continuously embedded in F . The domain of a linear operator L with 
graph in E × F will be denoted by D(L). The Banach space of continuous k-linear operators 
from Ek to F , k ∈ N , is denoted by Lk(E; F) (without subscript, as usual, if k = 1). Given 
h ∈ E and k ∈N , we shall set h⊗k = (h, . . . , h) ∈ Ek . If E and F are Hilbert spaces, L 2(E; F)

will stand for the Hilbert space of Hilbert-Schmidt operators from E to F . An expression of the 
type a � b means that there exists a positive constant N such that a ≤ Nb, and a � b stands for 
a � b and b � a.

We recall the following form of Taylor’s formula (see, e.g., [16, p. 349]). Let U ⊆ E be open, 
f ∈ Cm(U ; F), x ∈ U and h ∈ E such that the segment [x, x + h] is contained in U . Then

f (x + h) =
m−1∑
k=0

1

k!D
kf (x)h⊗k +

1∫
0

(1 − t)m−1

(m − 1)! Dmf (x + th)h⊗m dt.

For the purposes of this section only, we denote a strongly continuous semigroup on a Hilbert 
space H and its generator by S and A, respectively. As is well known, there exist M ≥ 1 and 
w ∈ R such that ‖S(t)‖ ≤ Mewt for all t ≥ 0. Let m ≥ 1 be an integer. If φ ∈ D(Am), one has the 
Taylor-like formula

S(t)φ =
m−1∑
k=0

tk

k!A
kφ + 1

(m − 1)!
t∫

0

(t − u)m−1S(u)Amφ du

(see, e.g., [5, Proposition 1.1.6]). We recall that Am is a closed operator and that D(Am) is a 
Hilbert space with scalar product〈

φ,ψ
〉
D(Am)

= 〈
φ,ψ

〉 + 〈
Aφ,Aψ

〉 + · · · + 〈
Amφ,Amψ

〉
.

Let T be a further strongly continuous semigroup on H . We shall say that S and T commute 
if S(t)T (t) = T (t)S(t) for all t ∈ R+. It is immediate that the product semigroup ST is strongly 
continuous. It also follows that S(s)T (t) = T (t)S(s) for all t, s ≥ 0: first one proves it for rational 
s and t , hence the general case follows by density and continuity. For details see, e.g., [9, p. 44]. 
Moreover T leaves invariant D(A): in fact, for any f ∈ D(A), one has

lim
h→0

S(h)T (t)f − T (t)f

h
= T (t)

(
lim
h→0

S(h)f − f

h

)
= T (t)Af.

This also implies, by uniqueness of the limit, that T (t)Af = AT (t)f . These observations in 
turn imply that the resolvent Rλ of the generator of T commutes with A, in the sense that, if 
f ∈ D(A), then Rλf ∈ D(A) and RλAf = ARλf (cf. [13, p. 171]).
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All stochastic elements will be defined on a fixed probability space (�, F , P ), endowed with 
a filtration (Ft )t∈[0,T ], with T a fixed positive number, that is assumed to satisfy the so-called 
usual assumptions. We shall denote by W a cylindrical Wiener process on a real separable Hilbert 
space U . We shall denote the closed subspace of Lp(�; C([0, T ]; H)), p > 0, of H -valued 
adapted continuous processes by Cp, which is hence a quasi-Banach space itself (with the in-
duced quasi-norm). Given a progressively measurable process C ∈ L0(�; L2(0, T ; L 2(U ; H))), 
the stochastic convolution S 
 C is the H -valued process defined by

S 
 C(t) :=
t∫

0

S(t − s)C(s) dW(s) ∀t ∈ [0, T ].

Similarly, if f ∈ L0(�; L1(0, T ; H)), we shall define the H -valued process S ∗ f by

S ∗ f (t) :=
t∫

0

S(t − s)f (s) ds ∀t ∈ [0, T ].

The stochastic integral of a process F with respect to W will be occasionally denoted by F · W
for typographical convenience. Moreover, we recall that, for any p ∈ ]0, ∞[ and progressively 
measurable L 2(U ; H)-valued process F , the Burkholder-Davis-Gundy inequality∥∥F · W∥∥

Lp(�;H)
≤ Np

∥∥F
∥∥

Lp(�;L2(0,T ;L 2(U ;H)))

holds, where Np is a constant depending on p only (see, e.g., [20]).

Lemma 2.1. Let p > 0, C ∈ Lp(�; L2(0, T ; L 2(U ; H))) be a progressively measurable pro-
cess, and n ≥ 0. One has

E

∥∥∥∥
t∫

0

(t − s)nS(t − s)C(s) dW(s)

∥∥∥∥p

≤ N
p
p Mp E

( t∫
0

(t − s)2ne2w(t−s)
∥∥C(s)

∥∥2
L 2(U ;H)

ds

)p/2

for every t ∈ [0, T ].
Proof. For any δ > 0, one has∥∥∥∥∥∥

t∫
0

(t − s)nS(t − s)C(s) dW(s)

∥∥∥∥∥∥
Lp(�;H)

≤ sup
t0∈[t,t+δ]

∥∥∥∥∥∥
t∫

0

(t0 − s)nS(t0 − s)C(s) dW(s)

∥∥∥∥∥∥
Lp(�;H)

.

Since 
(
(t0 − ·)S(t0 − ·)B) · W is a local martingale, the Burkholder-Davis-Gundy inequality and 

the ideal property of Hilbert-Schmidt operators yield

sup
t0∈[t,t+δ]

∥∥∥∥∥∥
t∫
(t0 − s)nS(t0 − s)C(s) dW(s)

∥∥∥∥∥∥
p
0 L (�;H)
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≤ NpM sup
t0∈[t,t+δ]

∥∥∥(t0 − ·)new(t0−·)∥∥C
∥∥

L 2(U ;H)

∥∥∥
Lp(�;L2(0,t;H))

.

Setting

φδ(t) =
{

ew(t+δ), if w ≥ 0,

ewt , if w < 0,

one has ew(t0−s) ≤ φδ(t − s) for all t0 ∈ [t, t + δ] and s ∈ [0, t], hence

sup
t0∈[t,t+δ]

∥∥∥∥∥∥
t∫

0

(t0 − s)nS(t0 − s)C(s) dW(s)

∥∥∥∥∥∥
Lp(�;H)

≤ NpM

∥∥∥(t + δ − ·)nφδ(t − ·)∥∥C
∥∥

L 2(U ;H)

∥∥∥
Lp(�;L2(0,t;H))

,

therefore

E

∥∥∥∥
t∫

0

(t −s)nS(t −s)C(s) dW(s)

∥∥∥∥p

≤N
p
p Mp E

( t∫
0

(t +δ−s)2nφ2
δ (t −s)

∥∥C(s)
∥∥2

L 2(U ;H)
ds

)p/2

for all δ > 0. Taking the limit as δ → 0 proves the claim. �
The following recursive relation for certain stochastic convolutions will be very useful in the 

sequel.

Lemma 2.2. Let C ∈ L0(�; L2(0, T ; L 2(U ; H))) be a progressively measurable process and 
define, for every k ∈ R+,


k(t) :=
t∫

0

S(t − s)(t − s)kC(s) dW(s).

Then 
k+1 = (k + 1)S ∗ 
k .

Proof. Let k ≥ 1. Using the identity

(t − s)k = k

t∫
s

(r − s)k−1 dr,

the stochastic Fubini theorem, and the semigroup property, one has, for every t ∈ [0, T ],
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k(t) =
t∫

0

S(t − s)(t − s)kC(s) dW(s)

= k

t∫
0

S(t − s)

( t∫
s

(r − s)k−1 dr

)
C(s) dW(s)

= k

t∫
0

r∫
0

S(t − s)(r − s)k−1C(s) dW(s) dr

= k

t∫
0

S(t − r)

r∫
0

S(r − s)(r − s)k−1C(s) dW(s) dr

= kS ∗ 
k−1(t). �
3. Singular perturbations by commuting semigroups

Let us consider the stochastic evolution equation on the Hilbert space H

du = Audt + α(u)dt + B(u)dW, u(0) = u0,

and the family of stochastic evolution equations on H indexed by a parameter ε ≥ 0

duε = (A + εG)uε dt + α(uε) dt + B(uε) dW, uε(0) = u0,

where (i) A and G are linear maximal dissipative operators on H such that the closure of A +εG, 
denoted by the same symbol, is maximal dissipative as well; (ii) the initial datum u0 belongs to 
L0(�, F0; H); (iii) the coefficients

α : � × [0, T ] × H −→ H, B : � × [0, T ] × H −→ L 2(U ;H)

are Lipschitz continuous in the third variable, uniformly with respect to the other ones, and such 
that α(·, ·, h) and B(·, ·, h) are progressively measurable for every h ∈ H . It is well known that 
under these conditions the above stochastic equations admit unique mild solutions u and uε , 
respectively, with continuous trajectories. Moreover, if u0 ∈ Lp(�, F0; H) for some p > 0, then 
u and uε belong to Cp .

The aim of this section is to provide sufficient conditions ensuring that uε → u in Cp . We rely 
on the following convergence result, which is a minor modification of [22, Theorem 2.4] (see 
also [14]).

Theorem 3.1. Let p ∈ ]0, ∞[, u0 ∈ Lp(�, F0; H). Assume that A + εG converges to A in the 
strong resolvent sense. Then uε → u in Cp as ε → 0.

We recall that a sequence of maximal dissipative operators (Ln) is said to converge to a 
maximal dissipative operator L in the strong resolvent sense if (λ − Ln)

−1x → (λ − L)−1x for 
all x ∈ H and all λ > 0.
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The problem of the convergence of uε to u is thus reduced to finding sufficient conditions for 
the convergence of A + εG to A in the strong resolvent sense as ε → 0. In view of the results 
on asymptotic expansions in the next sections, we limit ourselves to the special case where the 
semigroups generated by A and G, denoted respectively by SA and SG, commute.

Lemma 3.2. Assume that SA and SG commute, i.e. that SA(t)SG(t) = SG(t)SA(t) for all t ≥ 0. 
Then A + εG converges to A in the strong resolvent sense as ε → 0.

Proof. One has, for any λ > 0 and f ∈ H ,

(
λ − (A + εG)

)−1
f =

∞∫
0

e−λtSA+εG(t)f dt =
∞∫

0

e−λtSA(t)SεG(t)f dt

and SεG(t)f → f as ε → 0, hence, by dominated convergence,

lim
ε→0

(
λ − (A + εG)

)−1
f =

∞∫
0

e−λtSA(t)f dt = (λ − A)−1f. �

Remarks 3.3. (i) Under the assumption that SA and SG commute, D(A) ∩ D(G) is a core for 
the generator of the product semigroup SASεG, which is contractive and strongly continuous. Its 
generator is hence equal to the closure of A + εG. So the hypothesis of maximal dissipativity of 
(the closure of) A + εG is automatically satisfied here.
(ii) It is clear from the proof of the previous lemma that not even the assumption of dissipativity 
of A and G is needed, but just that the resolvent sets of A and G have non-empty intersection. In 
particular, the statement of the lemma continues to hold if A and G are maximal quasi-dissipative, 
i.e. if there exist a and b ∈ R+ such that A − aI and G − bI are maximal dissipative. In this 
respect, as long as one is concerned with applications to the stochastic equation, there is no loss 
of generality assuming that A and G are dissipative rather than quasi-dissipative, because the 
latter case reduces to the former by adding a linear term to the drift α.

4. Asymptotic expansion of uε

Our next goal is to obtain an expression of the difference uε − u as a polynomial in ε plus 
a remainder. Once such an expression is obtained, the main issue is to prove estimates on the 
coefficients of the polynomial and on the remainder. Such estimates will crucially depend on 
suitable regularity assumptions on the coefficients α and B that will be assumed throughout the 
section to be random and time-dependent, but not explicitly dependent on u. In particular, let us 
consider the stochastic evolution equations

du = Audt + α dt + B dW, u(0) = u0, (2)

and

duε = Auε dt + εGuε dt + α dt + B dW, uε(0) = u0, (3)
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where A and G are maximal dissipative and generate commuting semigroups. As before, we 
denote the closure of A + εG, ε > 0, by the same symbol. Moreover, we assume that there exist 
p ∈ [1, ∞[ and an integer m ≥ 1 such that

u0 ∈ Lp(�;D(Gm)), α ∈ Lp(�;L1(0, T ;D(Gm))),

B ∈ Lp(�;L2(0, T ;L 2(U ;D(Gm)))).
(4)

Then equations (2) and (3) admit unique mild solutions u and uε in Cp , respectively.1 Just for 
convenience, we also assume that ε ∈ [0, 1].

All results in this section do not use the assumption that A and G are maximal dissipative, 
except in an indirect way in Proposition 4.11, namely through Theorem 3.1. In particular, all 
results except Proposition 4.11 continue to hold under the same assumptions on u0, α and B , 
commutativity of SA and SG, and the existence of unique solutions u and uε ∈ Cp to (2) and (3), 
respectively.

We begin with a decomposition of uε that is essentially of algebraic nature. Namely, recalling 
assumption (4), let us introduce the adapted H -valued processes v1, . . . , vm−1 defined as

vk(t) := tkSA(t)Gku0 +
t∫

0

(t − s)kSA(t − s)Gkα(s) ds

+
t∫

0

(t − s)kSA(t − s)GkB(s) dW(s)

for each k ∈ {1, . . . , m − 1}, and the family of adapted H -valued processes (Rm,ε)ε∈]0,1] defined 
as

Rm,ε(t) := εm

(m − 1)!SA(t)

t∫
0

(t − r)m−1SεG(r)Gmu0 dr

+ εm

(m − 1)!
t∫

0

SA(t − s)

t−s∫
0

(t − s − r)m−1SεG(r)Gmα(s) dr ds

+ εm

(m − 1)!
t∫

0

SA(t − s)

t−s∫
0

(t − s − r)m−1SεG(r)GmB(s) dr dW(s).

Then one has the following Taylor-like expansion of uε around u, with Rm,ε playing the role of 
a remainder term.

1 Since α and B are not functions of the unknown, the only non-trivial issue is the pathwise continuity, which follows 
by the contractivity of the semigroups generated by A and (the closure of) A + εG (see, e.g., [8, §6.2]).
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Proposition 4.1. One has

uε = u +
m−1∑
k=1

εk

k! vk + Rm,ε ∀ε ∈ ]0,1].

Moreover, the processes v1, . . . , vm−1 and Rm,ε belong to Cp .

For the proof we will need several lemmas, the main point of which is to obtain suitable esti-
mates of the remainder term Rm,ε . More precisely, we are going to estimate Rm,ε in Lp(�; H)

pointwise with respect to the time variable as well as in Cp. As mentioned above, such estimates 
do not use the dissipativity of A and G. For this reason, we shall prove them under the sole 
assumption that A and G are generators of strongly continuous semigroups SA and SG, respec-
tively, with ‖SA(t)‖ ≤ MAewAt and ‖SG(t)‖ ≤ MGewGt for all t ∈ R+, where MA, MG ≥ 1 and 
wA, wG ∈R.

Let us set

R1
m,ε(t) := SA(t)

t∫
0

(t − r)m−1SεG(r)Gmu0 dr,

R2
m,ε(t) :=

t∫
0

SA(t − s)

t−s∫
0

(t − s − r)m−1SεG(r)Gmα(s) dr ds,

R3
m,ε(t) :=

t∫
0

SA(t − s)

t−s∫
0

(t − s − r)m−1SεG(r)GmB(s) dr dW(s),

so that

Rm,ε = εm

(m − 1)!
(
R1

m,ε + R2
m,ε + R3

m,ε

)
, (5)

and introduce the function fε : R+ →R+ defined as

fε(t) := ewAt

t∫
0

(t − r)m−1eεwGr dr. (6)

Lemma 4.2. One has, for every t ∈ [0, T ] and ε ∈ [0, 1],

‖R1
m,ε(t)‖ ≤ MAMGfε(t)

∥∥u0
∥∥

D(Gm)

and

‖R2
m,ε(t)‖ ≤ MAMG

t∫
fε(t − s)

∥∥α(s)
∥∥

D(Gm)
ds.
0
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Proof. Both estimates are immediate consequences of Minkowski’s inequality and the definition 
of f . For instance, the second one is given by

‖R2
m,ε(t)‖ ≤ MAMG

t∫
0

ewA(t−s)
∥∥α(s)

∥∥
D(Gm)

t−s∫
0

(t − s − r)m−1eεwGr dr ds

= MAMG

t∫
0

fε(t − s)
∥∥α(s)

∥∥
D(Gm)

ds. �

The running maximum of the function fε defined in (6) will be denoted by f ∗
ε , i.e. f ∗

ε (t) :=
maxs∈[0,t] fε(s).

Lemma 4.3. One has, for every t ∈ [0, T ] and ε ∈ [0, 1],∥∥R1
m,ε(t)

∥∥
Lp(�;H)

≤ MAMGfε(t)
∥∥u0

∥∥
Lp(�;D(Gm))

and ∥∥R2
m,ε(t)

∥∥
Lp(�;H)

≤ MAMGf ∗
ε (t)

∥∥α
∥∥

Lp(�;L1(0,t;D(Gm)))
.

Proof. The first estimate is evident. The second one follows by

t∫
0

fε(t − s)
∥∥α(s)

∥∥
D(Gm)

ds ≤ ∥∥fε(t − ·)∥∥
L∞(0,t)

∥∥α
∥∥

L1(0,t;D(Gm))

= ∥∥fε

∥∥
L∞(0,t)

∥∥α
∥∥

L1(0,t;D(Gm))
. �

Lemma 4.4. One has, for every ε ∈ [0, 1],∥∥R1
m,ε

∥∥
Cp ≤ MAMGf ∗

ε (T )
∥∥u0

∥∥
Lp(�;D(Gm))

and ∥∥R2
m,ε

∥∥
Cp ≤ MAMGf ∗

ε (T )
∥∥α

∥∥
Lp(�;L1(0,T ;D(Gm)))

.

Proof. The first estimate is again evident, thanks to Lemma 4.2. The second one follows by

t∫
0

fε(t − s)
∥∥α(s)

∥∥
D(Gm)

ds ≤ f ∗
ε (t)

∥∥α
∥∥

L1(0,t;D(Gm))
≤ f ∗

ε (T )
∥∥α

∥∥
L1(0,T ;D(Gm))

. �

The estimates of R3
m,ε are more delicate. The reason is that the double integral in its definition, 

i.e.
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R3
m,ε(t) :=

t∫
0

SA(t − s)

t−s∫
0

(t − s − r)m−1SεG(r)GmB(s) dr dW(s),

is not a stochastic convolution. In fact, while it can be written as

t∫
0

R(t − s)B(s) dW(s), R(t) := SA(t)

t∫
0

(t − r)m−1SεG(r)Gm dr,

the family of operators (R(t))t∈R+ is not a semigroup. Unfortunately we are not aware of any 
maximal inequalities for such “nonlinear” stochastic convolutions. We shall nonetheless obtain 
estimates on the remainder term R3

m,ε by different arguments.

Lemma 4.5. One has, for every t ∈ [0, T ] and ε ∈ [0, 1],∥∥R3
m,ε(t)

∥∥
Lp(�;H)

≤ NpMAMGf ∗
ε (t)

∥∥B
∥∥

Lp(�;L2(0,t;L 2(U ;D(Gm))))
.

Proof. We shall use an argument analogous to the one used in the proof of Lemma 2.1. Let us 
set

C(t, s) := SA(t − s)

t−s∫
0

(t − s − r)m−1SεG(r)GmB(s) dr,

so that R3
m,ε(t) =

(
C(t, ·) · W )

t
. Then∥∥R3

m,ε(t)
∥∥

Lp(�;H)
≤ sup

t0∈[t,t+δ]
∥∥(

C(t0, ·) · W )
t

∥∥
Lp(�;H)

,

with ∥∥(
C(t0, ·) · W )

t

∥∥
Lp(�;H)

≤ Np

∥∥C(t0, ·)
∥∥

Lp(�;L2(0,t;L 2(U ;H)))

and

∥∥C(t0, s)
∥∥

L 2(U ;H)
≤ MAMGewA(t0−s)

t0−s∫
0

(t0 − s − r)m−1eεwGr
∥∥B(s)

∥∥
L 2(U ;D(Gm))

dr,

where

exp(wA(t0 − s)) ≤ exp
(
wA(t + δ1{wA≥0} − s)

)
,

t0−s∫
0

(t0 − s − r)m−1eεwGr dr ≤
t+δ−s∫

0

(t + δ − s − r)m−1eεwGr dr
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hence

∥∥C(t0, s)
∥∥

L 2(U ;H)
≤ MAMG

∥∥B(s)
∥∥

L 2(U ;D(Gm))
·

· exp
(
wA(t + δ1{wA≥0} − s)

) t+δ−s∫
0

(t + δ − s − r)m−1eεwGr dr

for all t0 ∈ [t, t + δ]. In particular,

sup
t0∈[t,t+δ]

∥∥C(t0, s)
∥∥

L 2(U ;H)
≤ MAMG

∥∥B(s)
∥∥

L 2(U ;D(Gm))
·

· exp
(
wA(t + δ1{wA≥0} − s)

) t+δ−s∫
0

(t + δ − s − r)m−1eεwGr dr.

Moreover, setting

fε,δ(t) := exp
(
wA(t + δ1{wA≥0})

) t+δ∫
0

(t + δ − r)m−1eεwGr dr,

we can write

∥∥R3
m,ε(t)

∥∥
Lp(�;H)

≤ sup
t0∈[t,t+δ]

∥∥(
C(t0, ·) · W )

t

∥∥
Lp(�;H)

≤ Np sup
t0∈[t,t+δ]

∥∥C(t0, ·)
∥∥

Lp(�;L2(0,t;L 2(U ;H)))

≤ Np

∥∥∥ sup
t0∈[t,t+δ]

∥∥C(t0, ·)
∥∥

L 2(U ;D(Gm))

∥∥∥
Lp(�;L2(0,t))

≤ NpMAMG

∥∥∥∥( t∫
0

f 2
ε,δ(t − s)

∥∥B(s)
∥∥2

L 2(U ;D(Gm))
ds

)1/2∥∥∥∥
Lp(�)

.

Since δ > 0 is arbitrary, taking the limit as δ → 0 yields

∥∥R3
m,ε(t)

∥∥
Lp(�;H)

≤ NpMAMG

∥∥fε(t − ·)B∥∥
Lp(�;L2(0,t;L 2(U ;D(Gm))))

≤ NpMAMGf ∗
ε (t)

∥∥B
∥∥

Lp(�;L2(0,t;L 2(U ;D(Gm))))
. �

Lemma 4.6. One has, for every ε ∈ [0, 1],

∥∥R3
m,ε

∥∥
Cp ≤ T m

NpM2
AMG(ewAT ∨ 1)

(
e(wA+εwG)T ∨ 1

)∥∥B
∥∥

Lp(�;L2(0,T ;L 2(U ;D(Gm))))
.

m
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Proof. Thanks to the stochastic Fubini theorem, R3
m,ε(t) can be written as

t∫
0

SεG(r)

t−r∫
0

(t − r − s)m−1SA(t − s)GmB(s) dW(s) dr

=
t∫

0

SA+εG(r)

t−r∫
0

(t − r − s)m−1SA(t − r − s)GmB(s) dW(s) dr,

thus also, setting

�(t) :=
t∫

0

(t − s)m−1SA(t − s)GmB(s) dW(s) ∀t ∈ [0, T ],

as SA+εG ∗ �(t), with

∥∥SA+εG ∗ �(t)
∥∥ ≤ MAMG

t∫
0

ewA(t−s)eεwG(t−s)
∥∥�(s)

∥∥ds

≤ MAMG

(
e(wA+εwG)T ∨ 1

) T∫
0

∥∥�(t)
∥∥dt.

Minkowski’s inequality yields

∥∥SA+εG ∗ �
∥∥

Cp ≤ MAMG

(
e(wA+εwG)T ∨ 1

) T∫
0

∥∥�(t)
∥∥

Lp(�;H)
dt,

where, by Lemma 2.1,∥∥�(t)
∥∥

Lp(�;H)
≤ NpMA

∥∥(t − ·)m−1ewA(t−·)‖B‖L 2(U ;D(Gm))

∥∥
Lp(�;L2(0,t))

≤ NpMAtm−1(ewAt ∨ 1)
∥∥B

∥∥
Lp(�;L2(0,t;L 2(U ;D(Gm))))

,

hence

T∫
0

∥∥�(t)
∥∥

Lp(�;H)
dt ≤ NpMA

∥∥B
∥∥

Lp(�;L2(0,T ;L 2(U ;D(Gm))))
(ewAT ∨ 1)

T∫
0

tm−1 dt.

From this it follows that

∥∥R3
m,ε

∥∥
Cp ≤ T m

NpM2
AMG(ewAT ∨ 1)

(
e(wA+εwG)T ∨ 1

)∥∥B
∥∥

Lp(�;L2(0,T ;L 2(U ;D(Gm))))
. �
m
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Remark 4.7. Lemmas 4.3, 4.4, and 4.5 continue to hold also if p ∈ ]0, 1[, while Lemma 4.6 does 
not, as its proof uses the Minkowski inequality, which reverses when p < 1.

We now have all the necessary tools to prove Proposition 4.1.

Proof of Proposition 4.1. It follows by commutativity of SA and SG that

uε = SASεGu0 + SASεG ∗ α + SASεG 
 B,

where, by the Taylor-like formula for strongly continuous semigroups of §2,

SεG(t) =
m−1∑
k=0

tk

k!ε
kGk + εm

(m − 1)!
t∫

0

(t − r)m−1SεG(r)Gm,

as an identity of linear operators on D(Gm). Since u0 ∈ Lp(�; D(Gm)), one has

SA+εG(t)u0 =
m−1∑
k=0

εktk

k! SA(t)Gku0 + εm

(m − 1)!SA(t)

t∫
0

(t − r)m−1SεG(r)Gmu0 dr.

Similarly, since α ∈ Lp(�; L1(0, T ; D(Gm))) and B ∈ Lp(�; L2(0, T ; L 2(U ; D(Gm)))),

SA+εG ∗ α(t) −
m−1∑
k=0

t∫
0

εk(t − s)k

k! SA(t − s)Gkα(s) ds

= εm

(m − 1)!
t∫

0

SA(t − s)

t−s∫
0

(t − s − r)m−1SεG(r)Gmα(s) dr ds

as well as

SA+εG 
 B(t) −
m−1∑
k=0

t∫
0

εk(t − s)k

k! SA(t − s)GkB(s) dW(s)

= εm

(m − 1)!
t∫

0

SA(t − s)

t−s∫
0

(t − s − r)m−1SεG(r)GmB(s) dr dW(s).

(7)

Therefore, recalling the definition of the processes v1, . . . , vm−1 and (Rm,ε)ε∈]0,1], the desired 
decomposition follows. It remains to check that vk belongs to Cp for every k = 1, . . . , m − 1. For 
m = 2 one has

v1 = 1(
u − uε − R2,ε

)
,

ε
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where u and uε belong to Cp thanks to assumption (4), and R2,ε belongs to Cp by Lemmas 4.4
and 4.6. Therefore, choosing ε ∈ ]0, 1] arbitrarily, the claim for m = 2 follows. By induction on 
m, the proof is completed. �
Remark 4.8. Estimates for the Cp-norm of vk can be obtained in a more direct (and precise) way 
exploiting the dissipativity of A. In fact, one has∥∥(·)kSAGku0

∥∥
Cp ≤ MAT kewAT

∥∥u0
∥∥

Lp(�;D(Gk))
,

and

∥∥∥∥
·∫

0

(· − s)kSA(· − s)Gkα(s) ds

∥∥∥∥
Cp

≤ MAT kewAT
∥∥α

∥∥
Lp(�;L1(0,T ;D(Gk)))

,

(in fact just assuming that A is the generator of a strongly continuous semigroup), as well as, by 
maximal estimates for stochastic convolutions,

∥∥∥∥
·∫

0

(· − s)kSA(· − s)GkB(s) dW(s)

∥∥∥∥
Cp

� T kewAT
∥∥B

∥∥
Lp(�;L2(0,T ;L 2(U ;D(Gk))))

.

Alternative assumptions on A yield similar estimates for the stochastic convolution, for instance 
if A generates an analytic semigroup. We shall not pursue this issue here.

The main result of the section now follows easily.

Theorem 4.9. One has, for every t ∈ [0, T ],
∥∥Rm,ε(t)

∥∥
Lp(�;H)

≤ εm

(m − 1)!MAMG

(
fε(t)

∥∥u0
∥∥

Lp(�;D(Gm))

+ f ∗
ε (t)

∥∥α
∥∥

Lp(�;L1(0,t;D(Gm)))
+ Npf ∗

ε (t)
∥∥B

∥∥
Lp(�;L2(0,t;L 2(U ;D(Gm))))

)
.

Moreover,

∥∥Rm,ε

∥∥
Cp ≤ εm

(m − 1)!MAMG

(
f ∗

ε (T )
∥∥u0

∥∥
Lp(�;D(Gm))

+ f ∗
ε (T )

∥∥α
∥∥

Lp(�;L1(0,T ;D(Gm)))

+ Np

T m

m
MA(ewAT ∨ 1)

(
e(wA+εwG)T ∨ 1

)∥∥B
∥∥

Lp(�;L2(0,T ;L 2(U ;D(Gm))))

)
.

In particular,

lim

∥∥Rm,ε

∥∥
Cp

m−1 = 0.

ε→0 ε
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Proof. This is an immediate consequence of the previous lemmas in this section, upon observing 
that fε and f ∗

ε converge pointwise to a finite limit as ε → 0. �
Remarks 4.10. (i) In view of Remark 4.7, the estimate in Lp(�; H) of Rm,ε(t) in the previous 
theorem can be extended to the range of exponents p ∈ ]0, 1[ thanks to the inequality∥∥R1

m,ε + R2
m,ε + R3

m,ε

∥∥
Lp(�;H)

≤ 31/p−1
(∥∥R1

m,ε

∥∥
Lp(�;H)

+ ∥∥R2
m,ε

∥∥
Lp(�;H)

+ ∥∥R3
m,ε

∥∥
Lp(�;H)

)
.

(ii) It seems interesting to remark that, without any dissipativity assumption on A and G, the 
previous theorem implies that, as soon as m ≥ 1, one has uε → u in Cp as ε → 0 without the 
need to appeal to Theorem 3.1.

We are now going to identify the process vk as the k-th derivative at zero of ε �→ uε . We shall 
actually prove more than this, namely that uε is m times continuously differentiable with respect 
to ε.

Proposition 4.11. The map ϕ : ε �→ uε is of class Cm from [0, 1] to Cp , with

Dkϕ(0) = vk ∀k ∈ {1, . . . ,m − 1}.

Proof. Let ε ∈ [0, 1] and h ∈ R be such that ε + h ∈ [0, 1]. We begin by establishing first-order 
continuous differentiability. One has

uε+h(t) − uε(t) = SA+εG(t)
(
ShG(t)u0 − u0

)
+

t∫
0

SA+εG(t − s)
(
ShG(t − s)α(s) − α(s)

)
ds

+
t∫

0

SA+εG(t − s)
(
ShG(t − s)B(s) − B(s)

)
dW(s),

where, recalling that ShG = SG(h ·),

lim
h→0

ShG(t)u0 − u0

h
= t lim

h→0

SG(ht)u0 − u0

ht
= tGu0

for every t ∈ [0, T ], hence

lim
h→0

SA+εG

(
ShGu0 − u0

)
h

= [t �→ tGu0]

in Cp by dominated convergence. Similarly, one has

lim
h→0

ShG(t − s)α(s) − α(s)

h
= (t − s) lim

h→0

SG(h(t − s))α(s) − α(s)

h(t − s)

= (t − s)Gα(s)
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for all s, t ∈ [0, T ] with s ≤ t , hence, again by dominated convergence,

lim
h→0

1

h

·∫
0

SA+εG(· − s)
(
ShG(· − s)α(s) − α(s)

)
ds

=
·∫

0

SA+εG(· − s)(· − s)Gα(s) ds

in Cp . The stochastic convolution term cannot be treated in the same way and requires more 
work. We shall write, for simplicity of notation, Sε in place of SA+εG. Introducing the processes 
yε = y0

ε and y1
ε defined by

yε(t) :=
t∫

0

Sε(t − s)B(s) dW(s),

y1
ε (t) :=

t∫
0

Sε(t − s)(t − s)GB(s) dW(s),

we need to show that

lim
h→0

yε+h − yε

h
= y1

ε in Cp. (8)

Duhamel’s formula yields

yε+h(t) = h

t∫
0

Sε(t − s)Gyε+h(s) ds +
t∫

0

Sε(t − s)B(s) dW(s)

= h

t∫
0

Sε(t − s)Gyε+h(s) ds + yε(t),

hence

yε+h(t) − yε(t)

h
=

t∫
0

Sε(t − s)Gyε+h(s) ds

=
t∫

0

Sε(t − s)

s∫
0

Sε+h(s − r)GB(r) dW(r) ds.

Since Sε+h 
GB converges to Sε 
GB in Cp as h → 0 by Theorem 3.1, it follows by dominated 
convergence that
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lim
h→0

yε+h − yε

h
=

·∫
0

Sε(· − s)

s∫
0

Sε(s − r)GB(r) dW(r) ds in Cp.

Moreover, by Lemma 2.2,

t∫
0

Sε(t − s)

s∫
0

Sε(s − r)GB(r) dW(r) ds =
t∫

0

Sε(t − s)(t − s)GB(s) dW(s) = y1
ε (t),

thus (8) is proved. Furthermore, it follows by the assumptions on B that the same argument also 
yields the stronger statement

lim
h→0

Gjyε+h − Gjyε

h
= Gjy1

ε in Cp ∀0 ≤ j ≤ m − 1 (9)

(with j integer). Let us turn to higher-order derivatives. We shall only consider the term involving 
the stochastic convolution, as the terms involving the initial datum and the deterministic convo-
lution can be treated in a completely analogous (in fact easier) way. We need to show that the 
k-th derivative of ε �→ yε , denoted by y(k), satisfies

y(k)
ε (t) =

t∫
0

SA+εG(t − s)(t − s)kGkB(s) dW(s) =: yk
ε (t)

for all k ≥ 2, as the case k = 1 has just been proved. We begin with some preparations. 
Lemma 2.2 implies that

yk
ε = kSε ∗ Gyk−1

ε = k!S∗k
ε Gkyε = k!S∗k

ε Sε 
 GkB (10)

for every k ∈ {1, . . . , m}, where S∗k
ε denotes the operation of convolution with Sε repeated k

times, i.e.

S∗1
ε φ := Sε ∗ φ, S∗k

ε φ = Sε ∗ (S∗(k−1)
ε φ).

It follows by a repeated application of Theorem 3.1 that Gjyk
ε+h → Gjyk

ε in Cp as h → 0 for 
all j , k ∈N with j + k ≤ m. We shall now proceed by induction, i.e. we are going to prove that, 
for any ε ∈ [0, 1], y(k)

ε = yk
ε implies y(k+1)

ε = yk+1
ε . Since yk

ε+h = kSε+h ∗ Gyk−1
ε+h , Duhamel’s 

formula yields, setting z := yk
ε+h/k,

z(t) = h

t∫
0

Sε(t − s)Gz(s) ds +
t∫

0

Sε(t − s)Gyk−1
ε+h(s) ds,

therefore, by the identity yk = kSε ∗ Gyk−1,
ε ε
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yk
ε+h(t) − yk

ε (t) = k

(
h

t∫
0

Sε(t − s)Gz(s) ds

+
t∫

0

Sε(t − s)
(
Gyk−1

ε+h(s) − Gyk−1
ε (s)

)
ds

)

= h

t∫
0

Sε(t − s)Gyk
ε+h(s) ds

+ k

t∫
0

Sε(t − s)
(
Gyk−1

ε+h(s) − Gyk−1
ε (s)

)
ds,

hence

yk
ε+h(t) − yk

ε (t)

h
=

t∫
0

Sε(t − s)Gyk
ε+h(s) ds

+ k

t∫
0

Sε(t − s)G
yk−1
ε+h(s) − yk−1

ε (s)

h
ds,

where, as discussed above, Gyk
ε+h → Gyk

ε in Cp as h → 0, so that, by dominated convergence,

lim
h→0

·∫
0

Sε(· − s)Gyk
ε+h(s) ds =

·∫
0

Sε(· − s)Gyk
ε (s) ds

in Cp . The inductive assumption means that

lim
h→0

y
(k−1)
ε+h − y

(k−1)
ε

h
= lim

h→0

yk−1
ε+h − yk−1

ε

h
= yk

ε

in Cp for every ε ∈ [0, 1]. The assumptions on B and (10) imply that the inductive assumption 
also yields, in complete analogy to the argument leading to (9), that

lim
h→0

Gjyk−1
ε+h − Gjyk−1

ε

h
= Gjyk

ε

for every positive integer j such that j + k ≤ m. Therefore, again by dominated convergence, we 
have

lim
h→0

·∫
Sε(· − s)G

yk−1
ε+h(s) − yk−1

ε (s)

h
ds =

·∫
Sε(· − s)Gyk

ε (s) ds
0 0

300



S. Albeverio, C. Marinelli and E. Mastrogiacomo Journal of Differential Equations 342 (2023) 282–324
in Cp , hence we infer that

lim
h→0

y
(k)
ε+h − y

(k)
ε

h
= lim

h→0

yk
ε+h − yk

ε

h
= (k + 1)Sε ∗ Gyk

ε = yk+1
ε ,

thus concluding the proof of the induction step. �
4.1. Asymptotic expansion of functionals of uε

We are now going to consider asymptotic expansions of processes of the type F(uε), where 
F is a functional taking values in a Banach space. All assumptions stated at the beginning of the 
sections are still in force.

We begin with a simple case.

Proposition 4.12. Let E be a Banach space and F : Cp → E be of class Cm−1, m ≥ 2. Then 
there exist w1, . . . , wm−2 ∈ E and Rm−1,ε ∈ E such that, for every ε ∈ ]0, 1],

F(uε) = F(u) +
m−2∑
n=1

εn

n! wn + Rm−1,ε,

where

wn =
n∑

j=1

∑
k1+···+kn=j

k1+2k2+···+nkn=n

n!
k1! · · ·kn!D

jF(u)
((

v1/1!)⊗k1, . . . ,
(
vn/n!)⊗kn

)
(11)

and

lim
ε→0

Rm−1,ε

εm−2 = 0.

Proof. Since ε �→ uε is of class Cm from [0, 1] to Cp by Proposition 4.11, it follows that 
ε �→ F(uε) belongs to Cm−1([0, 1]; E). The expression for F(uε) then follows immediately 
by Taylor’s theorem, and the expression for wn follows by the formula for higher derivatives of 
composite functions (sometimes called Faà di Bruno’s formula – see, e.g., [2, p. 272]). Further-
more, denoting the map ε �→ uε by ϕ, one has

Rm−1,ε =
1∫

0

(1 − t)m−2

(m − 2)! Dm−1(F ◦ ϕ)(εt)εm−1 dt,

where Dm−1(F ◦ ϕ) is bounded in E on the compact interval [0, 1] because it is continuous 
thereon. Denoting the maximum of the E-norm of this function on [0, 1] by M1, we have

Rm−1,ε

εm−2 ≤ ε
M1

(m − 1)! ,

where the right-hand side obviously tends to zero as ε → 0. �

301



S. Albeverio, C. Marinelli and E. Mastrogiacomo Journal of Differential Equations 342 (2023) 282–324
We shall now assume that F ∈ Cm(Cp; E) and derive an expansion of uε − u of order m − 1. 
Note that an argument based on Taylor’s formula for ε �→ F(uε), as in the previous proposition, 
does not work because ε �→ uε is only of class Cm−1, hence its composition with F is also of 
class Cm−1. We are going to use instead a construction based on composition of power series.

Theorem 4.13. Let E be a Banach space and F : Cp → E be of class Cm, m ≥ 1. Then there 
exist w1, . . . , wm−1 ∈ E and Rm,ε ∈ E such that, for every ε ∈ ]0, 1],

F(uε) = F(u) +
m−1∑
n=1

εn

n! wn + Rm,ε,

where the (wn) are defined as in (11) and

lim
ε→0

Rm,ε

εm−1 = 0.

Proof. Taylor’s formula applied to F yields

F(uε) − F(u) =
m−1∑
n=1

DnF(u)(uε − u)⊗n

+
1∫

0

(1 − t)m−1

(m − 1)! DmF(tuε + (1 − t)u)(uε − u)⊗m dt,

(12)

where, by Proposition 4.1,

uε − u =
m−1∑
k=1

vk

k! ε
k + Rm,ε =

m−1∑
k=1

vk

k! ε
k + R̄m,εε

m, (13)

where R̄m,ε ∈ Cp by (5) and Lemmas 4.4 and 4.6. Multilinearity of the higher-order derivatives 
of F implies that

m−1∑
n=1

DnF(u)(uε − u)⊗n =
m−1∑
n=1

wn

n! εn +
(m−1)m∑

n=m

anε
n, (14)

where wn, n = 1, . . . , m − 1 are defined as in (11), and the an are (finite) linear combinations of 
terms of the type

DjF(u)
(
v

⊗k1
1 , . . . , v⊗kn

n , R̄
⊗kn+1
m,ε

)
,

where j ∈ {1, . . . , m − 1} and k1, . . . , kn+1 ∈N , k1 + · · · + kn + kn+1 = j .
Let us show that wn ∈ E for every n = 1, . . . , m − 1: by (11) it suffices to note that, for any 

j = 1, . . . , n and k1 + · · · + kn = j ,
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∥∥∥DjF(u)
((

v1/1!)⊗k1, . . . ,
(
vn/n!)⊗kn

)∥∥∥
E

�
∥∥DjF(u)

∥∥
Lk(Cp;E)

∥∥v1
∥∥k1

Cp · · ·∥∥vn

∥∥kn

Cp ,

where the right-hand side is finite because u ∈ Cp and F ∈ Cm(Cp; E) by assumption, and 
v1, . . . , vm−1 ∈ Cp by Proposition 4.1. The proof that an ∈ E for all n = m, . . . , (m − 1)m, with 
norms bounded uniformly for ε ∈ [0, 1], is entirely similar, as it immediately follows by Lem-
mas 4.4 and 4.6.

Finally, by multilinearity of DmF , the integral on the right-hand side of (12) can be written 

as 
∑m2

n=m bnε
n, where bn depends on ε. By a reasoning entirely similar to the previous ones, in 

order to prove that bn ∈ E for all n and that their E-norms are bounded as ε → 0, we proceed 
as follows: DmF is continuous, hence bounded on a neighborhood U of u. Without loss of 
generality, U can be assumed to be convex. Since uε → u in Cp as ε → 0 by assumption, uε ∈ U

for ε sufficiently small, hence also tuε + (1 − t)u ∈ U , so that DmF(tuε + (1 − t)u) is bounded 
in Lk(Cp; E) uniformly over ε in a (right) neighborhood of zero and t ∈ [0, 1]. Minkowski’s 
inequality now implies that the E-norm of each bn can be estimated uniformly with respect to ε. 
Setting

Rm,ε :=
(m−1)m∑

n=m

anε
n +

m2∑
n=m

bnε
n,

the proof is completed. �
We now consider the case where F is defined only on C([0, T ]; H).

Theorem 4.14. Let E0 be a Banach space, F : C([0, T ]; H) → E0 of class Cm. Assume that 
there exists β ≥ 0 such that

∥∥DjF(x)
∥∥

Lj (C([0,T ];H);E0)
� 1 + ∥∥x

∥∥β

C([0,T ];H)
∀j ≤ m

and let q > 0 be defined by

β + m

p
= 1

q
.

Then the conclusions of Theorem 4.13 hold with E := Lq(�; E0).

Proof. Taylor’s theorem implies that (12), (13) and (14) still hold, as identities of E0-valued 
random variables. As in the proof of the previous theorem, the integral on the right-hand side 

of (12) can be written as the finite sum 
∑m2

n=m bnε
n, with each bn possibly depending on ε. 

We have to show that wn, an, bn ∈ Lq(�; E0) for every n, and that the elements in (an) and 
(bn) that depends on ε remain bounded in Lq(�; E0) as ε → 0. To this purpose, denoting the 
norms of C([0, T ]; H) and Lj (C([0, T ]; H); E0) by ‖·‖ and ‖·‖Lj

, respectively, for simplicity 
of notation, note that one has, for any j ≤ m,∥∥∥DjF(u)

(
v

⊗k1
1 , . . . , v⊗kn

n , R̄
⊗kn+1
m,ε

)∥∥∥ ≤ ∥∥DjF(u)
∥∥

L

∥∥v1
∥∥k1 · · ·∥∥vn

∥∥kn
∥∥R̄m,ε

∥∥kn+1 ,

E0 j
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where ‖DjF(u)‖Lj
� 1 + ‖u‖β by assumption and k1 + · · · + kn+1 = j ≤ m, hence

β

p
+ k1

p
+ · · · + kn+1

p
≤ β

p
+ m

p
= 1

q
.

Applying Hölder’s inequality with the exponents implied by this inequality yields∥∥∥DjF(u)
(
v

⊗k1
1 , . . . , v⊗kn

n , R̄
⊗kn+1
m,ε

)∥∥∥
Lq(�;E0)

�
(
1 + ‖u‖β

Cp

)∥∥v1
∥∥

Cp · · ·∥∥vn

∥∥
Cp

∥∥R̄m,ε

∥∥
Cp ,

where we have used the identity ‖zβ‖Lp/β(�) = ‖z‖β

Lp(�), which holds for any positive ran-

dom variable z. Recalling that R̄m,ε is bounded in Cp uniformly over ε ∈ [0, 1], the claim 
about (wn) and (an) is proved. In order to show that (bn) enjoys the same properties of 
(an), it is immediately seen that it suffices to bound the norm of DmF(tuε + (1 − t)u) in 
Lq/β(�; Lm(C(0, T ; H); E0)), uniformly with respect to ε in a right neighborhood of zero. 
But ∥∥DmF(tuε + (1 − t)u)

∥∥
Lm

� 1 + ∥∥u + t (uε − u)
∥∥β

implies ∥∥DmF(tuε + (1 − t)u)
∥∥

Lp/β(�;Lm)
� 1 + ∥∥u + t (uε − u)

∥∥β

Cp

� 1 + ∥∥u
∥∥β

Cp + ∥∥uε − u
∥∥β

Cp ,

where the norm in Cp of uε − u tends to zero as ε → 0. The proof is thus complete. �
Remark 4.15. One could have also approached the problem in a more abstract way, establishing 
conditions implying that the function F can be “lifted” to a function of class Cm from Cp to 
E = Lq(�; E0), and then applying the Theorem 4.13. We have preferred the above more direct 
way because it could also be applicable, mutatis mutandis, in situations where F admits a series 
representation not necessarily of Taylor’s type.

5. Singular perturbations of a transport equation and the Musiela SPDE

5.1. A transport equation

Let w be a fixed strictly positive real number and set, for notational convenience, L2
w :=

L2(R, ewxdx). Let H be the Hilbert space of absolutely continuous functions f ∈ L1
loc(R) such 

that f ′ ∈ L2
w , equipped with the scalar product

〈f,g〉 := lim
x→+∞f (x)g(x) + 〈

f ′, g′〉
L2

w
.

Here and in the following, for any φ ∈ L1
loc(R), we denote by φ′ its derivative in the sense 

of distributions. The definition of the scalar product in H is well posed because f (+∞) :=
limx→+∞ f (x) exists and is finite for every f ∈ H . In fact, for any a, x ∈ R with x ≥ a, one has
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|f (x) − f (a)| ≤
x∫

a

|f ′(y)|dy ≤
( x∫

a

|f ′(y)|2ewy dy

)1/2( +∞∫
a

e−wy dy

)1/2

. (15)

We shall denote the norm in H induced by the above scalar product by ‖·‖. The following 
simple consequence of the definition of H will be repeatedly used below. For an open interval 
I ⊆ R and a natural number n, let Hn(I) be the Sobolev space of functions in L2(I ) with 
distributional derivatives of all orders up to n also belonging to L2(I ). We shall write, with a 
harmless abuse of notation, Hn(R+) to denote Hn(]0, +∞[). If f and f ′ belong to H , then 
x �→ f ′(x)e

w
2 x ∈ H 1 := H 1(R), hence

lim
x→±∞f ′(x)e

w
2 x = 0 (16)

(see, e.g., [3, p. 214]), in particular limx→+∞ f ′(x) = 0.
Let SA be the strongly continuous semigroup on H defined by [SA(t)f ](x) := f (t + x). The 

elementary identity ∫
R

|f ′(t + x)|2ewx dx = e−wt

∫
R

|f ′(x)|2ewx dx

implies that SA is a contraction semigroup. Therefore, by the Lumer-Phillips theorem (see, e.g., 
[29, p. 60]), its generator A is a linear maximal dissipative operator on H . It follows from the 
definition of SA that Af = f ′ on D(A) = {

f ∈ H : f ′ ∈ H
}
.

One has the following formula of integration by parts (that also gives, as a special case, a 
direct proof of the dissipativity of A).

Lemma 5.1. If f , g ∈ D(A), then

〈Af,g〉 = −〈f,Ag〉 − w
〈
f ′, g′〉

L2
w
.

In particular,

〈Af,f 〉 = −w

2

∥∥f ′∥∥2
L2

w
.

Proof. By definition one has

〈Af,g〉 = f ′(+∞)g(+∞) +
∫
R

f ′′(x)g′(x)ewx dx,

where g(+∞) is finite and f ′(+∞) = 0. Integrating by parts yields

〈Af,g〉 =
∫
R

f ′′(x)g′(x)ewx dx

= lim f ′(x)g′(x)ewx − lim f ′(x)g′(x)ewx
x→+∞ x→−∞
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−
∫
R

f ′(x)g′′(x)ewx dx − w

∫
R

f ′(x)g′(x)ewx dx

= −〈f,Ag〉 − w
〈
f ′, g′〉

L2
w
,

where the two limits are equal to zero thanks to (16). �
Let us now consider the operator A2, defined on its natural domain D(A2) of elements f ∈

D(A) such that Af ∈ D(A).

Lemma 5.2. The operator A2 is quasi-dissipative. More precisely, A2 − (w2/2)I is dissipative.

Proof. Let f ∈ D(A2), and substitute g = Af in the integration by parts formula of the previous 
lemma. We get

‖Af ‖2 = −〈A2f,f 〉 − w
〈
f ′, f ′′〉

L2
w

= −〈A2f,f 〉 − w〈Af,f 〉

i.e.

〈A2f,f 〉 + w〈Af,f 〉 = −‖Af ‖2,

hence also

〈A2f,f 〉 − w2

2

∥∥f ′∥∥2
L2

w
= −‖Af ‖2

and

〈A2f,f 〉 − w2

2
‖f ‖2 = −‖Af ‖2 − w2

2
|f (+∞)|2 ≤ 0. �

Proposition 5.3. The operator G := A2 − (w2/2)I is maximal dissipative.

Proof. The dissipativity of G has already been proved. Moreover, A2 is closed, as is every 
integer positive power of the generator of a strongly continuous semigroup (see, e.g., [5, Propo-
sition 1.1.6]). Hence we only have to show that there exist λ > 0 such that the image of λ − G

is H , or, equivalently, that there exists λ > w2/2 such that the image of λ − A is H . To this pur-
pose, let f ∈ H and consider the equation λy − y′′ = f , which yields λy′ − y′′′ = f ′. Defining 
(formally, for the moment) z through y′(x) = z(x)e−wx/2, one has

y′′′(x)ewx/2 = z′′(x) − wz′(x) + w2

4
z(x), (17)

hence

λy′(x)ewx/2 − y′′′(x)ewx/2 = (
λ − w2/4

)
z(x) + wz′(x) − z′′(x).

We are thus led to consider the equation
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(
λ − w2/4

)
z + wz′ − z′′ = f̃ , f̃ (x) := f ′(x)ewx/2.

Let us introduce the bounded bilinear form a on H 1 defined as

a(ϕ,ψ) := (
λ − w2/4

)∫
R

ϕψ + w

∫
R

ϕ′ψ +
∫
R

ϕ′ψ ′.

One has

a(ϕ,ϕ) = (
λ − w2/4

)∫
R

ϕ2 + w

∫
R

ϕ′ϕ +
∫
R

(ϕ′)2,

where 
∫
R ϕ′ϕ = 0, hence, for any λ > w2/4, the bilinear form a is coercive on H 1. The 

Lax-Milgram theorem then yields the existence and uniqueness of a (weak) solution z ∈ H 1. 
Moreover, the equation satisfied by z implies that, in fact, z ∈ H 2. This immediately yields the 
existence of a solution y to λy −y′′ = f . Moreover, by definition of z it is immediate that y ∈ H , 
the identity y′′(x)ewx/2 = z′(x) −wz(x)/2 implies that y′′ ∈ L2

w , and (17) implies that y′′′ ∈ L2
w , 

i.e. y ∈ D(A2), thus completing the proof. �
Since A is maximal dissipative, the transport equation on H

du = Audt + α(u)dt + B(u)dW, u(0) = u0,

with α and B satisfying the measurability and Lipschitz continuity assumptions of §3 and u0 ∈
Lp(�; H), p > 0, admits a unique mild solution u ∈ Cp (see, e.g., [8, Chapter 7] for the case 
p ≥ 2 and [19] for the general case). Under the same assumptions on α, B , and u0, the singularly 
perturbed equation

duε = (A + εG)uε dt + α(uε) dt + B(uε) dW, uε(0) = u0,

admits a unique mild solution uε ∈ Cp , which converges to u in Cp as ε → 0. Furthermore, if 
the coefficients α and B do not depend on u and there exists an integer number m ≥ 1 such that

u0 ∈ Lp(�;D(A2m)), α ∈ Lp(�;L1(0, T ;D(A2m))),

B ∈ Lp(�;L2(0, T ;L 2(U ;D(A2m)))),

then we can construct a representation of the difference uε − u as a polynomial of degree m − 1
plus a remainder term of higher order, applying the results of §4.

5.2. Parabolic approximation of Musiela’s SPDE

Let u(t, x), t, x ≥ 0, denote the instantaneous forward rate at time t with maturity t + x. 
Musiela observed that the equation for forward rates in the Heath-Jarrow-Morton model can be 
written as (the mild form of)
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du(t, x) = ∂xu(t, x) dt + α0(t, x) dt +
∞∑

k=1

σk(t, x)dwk(t), (18)

where (wk)k∈N is a sequence of standard real Wiener processes, the volatilities σk are possibly 
random, and α0 is uniquely determined by (σk) if the reference probability measure is such that 
implied discounted bond prices are local martingales. In particular, in this case it must necessarily 
hold

α0(t, x) =
∞∑

k=1

σk(t, x)

x∫
0

σk(t, y) dy.

For details on the financial background we refer to, e.g., [6,10,12,23,24]. There is a large liter-
ature on the well-posedness of (18) in the mild sense, also in the (more interesting) case where 
(σk), hence α0, depend explicitly on the unknown u, with different choices of state space as well 
as with more general noise (see, e.g., [1,4,10,15,18,28], [25, §20.3]). Here we limit ourselves 
to the case where (σk) are possibly random, but do not depend explicitly on u, and use as state 
space H(R+), which we define as the space of locally integrable functions on R+ such that 
f ′ ∈ L2(R+, ewx dx), endowed with the inner product

〈f,g〉 = f (+∞)g(+∞) +
+∞∫
0

f ′(x)g′(x)ewx dx.

This choice of state space, introduced in [10] (cf. also [27]), to which we refer for further details, 
is standard and enjoys many good properties from the point of view of financial modeling. For 
instance, forward curves are continuous and can be “flat” at infinity without decaying to zero.

In order to give a precise notion of solution to (18), we recall that the semigroup of left 
translation on H(R+) is strongly continuous and contractive, and that its generator is A0 : φ �→
φ′ on the domain D(A0) = {φ ∈ H(R+) : φ′ ∈ H(R+)} (see [10]). Moreover, let us assume that 
there exists p > 0 such that

E

( ∞∑
k=1

T∫
0

∥∥σk(t, ·)
∥∥2

H(R+)
dt

)p

< ∞, σk(t,+∞) = 0 ∀k ∈ N, (19)

so that the random time-dependent linear map

B0(ω, t) : �2 −→ H(R+)

(hk) �−→
∞∑

k=1

σk(ω, t, ·)hk

belongs to L2p(�; L2(0, T ; L 2(�2; H(R+)))). Setting, for any φ ∈ L1 (R+),
loc
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[Iφ](x) :=
x∫

0

φ(y)dy, x ≥ 0,

one has the basic estimate ∥∥φ Iφ
∥∥

H(R+)
�

∥∥φ
∥∥2

H(R+)

for every φ ∈ H(R+) such that φ(+∞) = 0 (cf. [10], or see Lemma 5.6 below for a 
proof in a more general setting). This implies that the assumption on (σk) yields α0 ∈
Lp(�; L1(0, T ; H(R+))). We then have the following well-posedness result for (18), written 
in its abstract form as

du + A0udt = α0 dt + B0 dW, u(0) = u0, (20)

where W is a cylindrical Wiener process on U := �2.

Proposition 5.4. Let p > 0. Assume that u0 ∈ Lp(�, F0; H(R+)) and (19) is satisfied. Then 
(20) has a unique mild solution u ∈ Cp(H(R+)) := Lp(�; C([0, T ]; H(R+))), which depends 
continuously on the initial datum u0.

Musiela’s equation (20) is closely related to the transport equation studied in §5.1 above, the 
main difference being the state space. In the following we shall denote the state space of the 
transport equation by H(R).

As mentioned in the introduction, it has been suggested (see [7] and references therein) that 
second-order parabolic SPDEs, with respect to the physical probability measure, capture several 
empirical features of observed forward rates. It seems reasonable to assume that such SPDEs 
would retain their parabolic character even after changing the reference probability measure to 
one with respect to which discounted bond prices are (local) martingales, thus excluding arbi-
trage. It is then natural to consider singular perturbations of the Musiela equation on H(R+)

adding a singular term εG to the drift A0 in (20), with G = A2
0, which is, roughly speaking, a 

second derivative in the time to maturity. On the other hand, if forward rates satisfy the general 
assumptions of the Heath-Jarrow-Morton model, the HJM drift condition is sufficient and neces-
sary for discounted bond prices to be local martingales. Therefore singular perturbations of the 
Musiela SPDE introduce arbitrage, in the sense that the implied discounted bond prices may not 
be local martingales. It is hence interesting to obtain quantitative estimates, loosely speaking, on 
the arbitrage introduced by a parabolic perturbation of the Musiela SPDE (20). The arguments 
used in §5.1 for the transport equation, however, give rise to major problems, mainly because 
boundary terms (at zero) appear that seem difficult to control. To circumvent these issues, we 
“embed” the abstract Musiela equation (20) into a transport equation on H(R) of the type con-
sidered in §5.1, we perturb the equation thus obtained, get asymptotic expansions, and finally 
“translate” back the results, in a suitable sense, to the Musiela equation.

We need some technical preparations first. Let H0(R+) be the Hilbert space of functions in 
H(R+) that are zero at infinity. The following embeddings and estimates are rather straightfor-
ward (see [10] for a proof) and will be repeatedly used below:

(i) H(R+) ↪→ Cb(R+);
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(ii) H0(R+) ↪→ L1(R+);
(iii) H0(R+) ↪→ L4

w(R+) := L4(R+, ewx dx).

Let Hm
w (R+) be the set of functions in L1

loc(R+) that belong to L2
w(R+) together with all 

their derivatives up to order m, endowed with the norm defined by

∥∥f
∥∥

Hm
w (R+)

=
m∑

k=0

∥∥f (k)
∥∥

L2
w(R+)

.

Lemma 5.5. Let f ∈ L1
loc(R+) and m a positive integer. The following assertions are equivalent:

(a) f ∈ D(Am
0 ); (b) f ′ ∈ Hm

w (R+); (c) x �→ f ′(x)ewx/2 ∈ Hm(R+). Moreover, for any f ∈
D(Am

0 ) with f (+∞) = 0,∥∥f
∥∥

D(Am
0 )

= ∥∥f ′∥∥
Hm

w (R+)
�

∥∥f ′ew·/2
∥∥

Hm(R+)
,

where the implicit constant depends only on m and w.

Proof. The equivalence of (a) and (b) is immediate by the definition of A0 and by an inequality 
completely analogous to (15). In particular, if f (+∞) = 0, the identity ‖f ‖D(Am

0 ) = ‖f ′‖Hm
w (R+)

is a tautology. The other assertions follow by the identity

(
f ′ew·/2)(n) =

n∑
j=0

(
n

j

)
(w/2)n−j f (j+1)ew·/2 ∀n ∈ {1, . . . ,m}. �

Lemma 5.6. Let m ≥ 1 be an integer. If f ∈ D(Am
0 ) with f (+∞) = 0, then

∥∥f If
∥∥

D(Am
0 )

�
∥∥f

∥∥2
D(Am

0 )
,

where the implicit constant depends only on m and w.

Proof. Let f ∈ D(Am
0 ) with f (+∞) = 0. In view of the previous lemma, we will bound the 

Hm
w (R+) norm of (f If )′ = f ′ If + f 2 in terms of the Hm

w (R+) norm of f ′. One has, omitting 
the indication of R+ in the notation,∥∥f ′ If

∥∥
L2

w
≤ ∥∥f ′∥∥

L2
w

∥∥If
∥∥

L∞ ≤ ∥∥f ′∥∥
L2

w

∥∥f
∥∥

L1 �
∥∥f ′∥∥

L2
w

∥∥f ′∥∥
L2

w

and ∥∥f 2
∥∥

L2
w

= ∥∥f
∥∥2

L4
w

�
∥∥f ′∥∥2

L2
w
.

Let 1 ≤ n ≤ m be an integer. One has

(
f ′ If

)(n) =
n∑(

n

j

)
f (j+1)(If )(n−j)
j=0
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and

∥∥f (j+1)(If )(n−j)
∥∥

L2
w

≤ ∥∥f (j+1)
∥∥

L2
w

∥∥(If )(n−j)
∥∥

L∞ ,

where, if j = n,

∥∥(If )(n−j)
∥∥

L∞ = ∥∥If
∥∥

L∞ ≤ ∥∥f
∥∥

L1 �
∥∥f ′∥∥

L2
w
,

while, if j ≤ n − 1,

∥∥(If )(n−j)
∥∥

L∞ = ∥∥f (n−1−j)
∥∥

L∞ �
∥∥f (n−j)

∥∥
L2

w
.

Similarly,

(f 2)
(n) =

n∑
j=0

(
n

j

)
f (j)f (n−j) = 2f f (n) +

n−1∑
j=1

(
n

j

)
f (j)f (n−j)

where

∥∥f f (n)
∥∥

L2
w

≤ ∥∥f
∥∥

L∞
∥∥f (n)

∥∥
L2

w
�

∥∥f ′∥∥
L2

w

∥∥f (n)
∥∥

L2
w

and, if 1 ≤ j ≤ n − 1,

∥∥f (j)f (n−j)
∥∥

L2
w

≤ ∥∥f (j)
∥∥

L∞
∥∥f (n−j)

∥∥
L2

w
�

∥∥f (j+1)
∥∥

L2
w

∥∥f (n−j)
∥∥

L2
w
.

The claim is then an immediate consequence of these estimates. �
Proposition 5.7. Let p > 0 and m a positive integer. If

E

( ∞∑
k=1

T∫
0

∥∥σk(t, ·)
∥∥2

D(A2m
0 )

dt

)p

< ∞

or, equivalently, B0 ∈ L2p(�; L2(0, T ; L 2(�2; D(A2m
0 )))), then α0 ∈ Lp(�; L1(0, T ; D(A2m

0 ))).

Proof. One has

∥∥B0(t)
∥∥2

L 2(�2;D(A2m
0 ))

=
∞∑

k=1

∥∥σk(t, ·)
∥∥2

D(A2m
0 )

and, by the previous lemma,
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∥∥α0(t)
∥∥

D(A2m
0 )

=
∥∥∥∥ ∞∑

k=1

σk(t, ·) Iσk(t, ·)
∥∥∥∥

D(A2m
0 )

≤
∞∑

k=1

∥∥σk(t, ·) Iσk(t, ·)
∥∥

D(A2m
0 )

�
∞∑

k=1

∥∥σk(t, ·)
∥∥2

D(A2m
0 )

= ∥∥B0(t)
∥∥2

L 2(�2;D(A2m
0 ))

,

hence

∥∥α0
∥∥

Lp(�;L1(0,T ;D(A2m
0 )))

�
∥∥∥∥∥B0

∥∥2
L 2(�2;D(A2m

0 ))

∥∥∥
Lp(�;L1(0,T ))

= ∥∥B0
∥∥

L2p(�;L2(0,T ;L 2(�2;D(A2m
0 ))))

. �
Recall that the operator A : φ �→ φ′ is defined on D(A) = {φ ∈ H(R) : φ′ ∈ H(R)}, and the 

operator A0 : φ �→ φ′ is defined on D(A0) = {φ ∈ H(R+) : φ′ ∈ H(R+)}.

Lemma 5.8. There exists a linear continuous extension operator L : D(A2m
0 ) → D(A2m) for ev-

ery positive integer m.

Proof. By an extension result due to Stein (see [26, p. 181]), there exists a linear continuous 
extension operator L0 : H 2m(R+) → H 2m(R). Since a locally integrable function f belongs to 
D(A2m

0 ) if and only if x �→ f ′(x)ewx/2 ∈ H 2m(R+) by Lemma 5.5, and f ∈ H(R+) implies that 
f (+∞) is finite, the map

L : f �−→
[
x �→ f (+∞) −

+∞∫
x

e−wy/2L0
(
f ′ew·/2)(y) dy

]

is well defined on D(A2m
0 ). Moreover, L0

(
f ′ew·/2

)∈H 2m(R), hence y �→e−wy/2L0
(
f ′ew·/2

)
(y) ∈

L1(x, +∞) by Cauchy’s inequality for all x ∈ R, so that Lf (x) is finite for every x ∈ R and 
Lf (+∞) := limx→+∞ Lf (x) = f (+∞). Moreover,

x �→ ewx/2(Lf )′(x) = L0
(
f ′ew·/2) ∈ H 2m(R),

hence Lf ∈ D(A2m) by an argument completely analogous to the proof of Lemma 5.5. Finally,

∥∥Lf
∥∥

D(A2m)
� |f (+∞)| + ∥∥(Lf )′ew·/2

∥∥
H 2m(R)

= |f (+∞)| + ∥∥L0(f
′ew·/2)

∥∥
H 2m(R)

� |f (+∞)| + ∥∥f ′ew·/2
∥∥

H 2m(R+)

�
∥∥f

∥∥
2m . �
D(A0 )
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Let L be the extension operator just introduced and set v0 := Lu0, α := Lα0, and B := LB0, 
with α0 and B0 as in Proposition 5.7, so that

v0 ∈ Lp(�,F0;D(A2m)), α ∈ Lp(�;L1(0, T ;D(A2m))),

B ∈ Lp(�;L2(0, T ;L 2(�2;D(A2m)))),

and consider the following stochastic equation in H(R):

dv = Av dt + α dt + B dW, v(0) = v0, t ≥ 0, (21)

where A is the generator of the semigroup of translation on H(R) and W is a cylindrical Wiener 
process on �2. By the discussion at the beginning of this section, this equation admits a unique 
mild solution v ∈ Cp(D(A2m)), which is thus also a strong solution, i.e. such that

v(t) = v0 +
t∫

0

Av(s) ds +
t∫

0

α(s) ds +
t∫

0

B(s) dW(s),

where the equality is in the sense of indistinguishable H(R)-valued (hence also C(R)-valued) 
processes. In a more explicit form, one has

v(t, x) = v0(x) +
t∫

0

∂xv(s, x) ds +
t∫

0

α(s, x) ds +
∞∑

j=1

t∫
0

σj (s, x) dwj (s)

for every x ∈ R, in particular for every x ∈ R+. Since the restrictions of v0, α and B to R+ are 
equal to u0, α0 and B0, respectively, the restriction of v to R+ must coincide with the unique 
strong solution in H(R+) to the Musiela equation (20). Moreover, the equation in H(R)

dvε = (A + εA2)vε dt + α dt + B dW, vε(0) = v0, (22)

also admits a unique mild solution vε ∈ Cp(D(A2m)), that converges to v in Cp(D(A2m)) as 
ε → 0. Let p ∈ [1, ∞[. It follows from Proposition 4.1 and Theorem 4.9, setting

vk(t):=tkSA(t)A2ku0+
t∫

0

(t−s)kSA(t−s)A2kα(s) ds+
∞∑

j=1

t∫
0

(t−s)kSA(t−s)A2kσj (s) dwj (s),

that vε satisfies an identity of the type

vε − v =
m−1∑
k=1

vk

k! ε
k + Rm,ε

in H(R), in particular in C(R), where v1, . . . , vm−1, Rm,ε ∈ Cp(H(R)) and Rm,ε/ε
m−1 tends to 

zero in Cp(H(R)) as ε → 0. Taking the H(R+) norm on both sides yields
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∥∥vε − v
∥∥

H(R+)
≤

m−1∑
k=1

1

k!ε
k
∥∥vk

∥∥
H(R+)

+ ∥∥Rm,ε

∥∥
H(R+)

,

where all H(R+) norms involved are finite because they are dominated by the corresponding 
ones in H(R), that are finite. We have thus proved the following.

Theorem 5.9. Let p ∈ [1, ∞[ and m ≥ 1 be a positive integer such that

E

( ∞∑
k=1

T∫
0

∥∥σk(t, ·)
∥∥2

D(A2m
0 )

dt

)p

< ∞.

Then equation (21) has a unique strong solution v in Cp(H(R)) and its restriction to H(R+) co-
incides with the unique strong solution u in Cp(H(R+)) to the Musiela equation (20). Moreover, 
the restriction to H(R+) of the mild solution vε to the perturbed extended Musiela equation (22)
converges to v in Cp(D(A2m)) and the estimate

∥∥vε − u
∥∥

Cp(H(R+))
≤

m−1∑
k=1

1

k!ε
k
∥∥vk

∥∥
Cp(H(R+))

+ ∥∥Rm,ε

∥∥
Cp(H(R+))

holds, with limε→0 Rm,ε/ε
m−1 = 0 in Cp(H(R+)).

We shall now consider bond prices and their approximation in the diffusive correction of 
Musiela’s equation. As already observed, the solutions v and vε to the equations (21) and (22)
have paths in H(R), hence their restrictions x �→ v(t, x) and x �→ vε(t, x), x ∈ R+, belong to 
H(R+) for every t ∈ [0, T ] and u(t, x) = v(t, x) for every (t, x) ∈ [0, T ] × R+. The price of a 
zero-coupon bond with face value equal to one at time t ≥ 0 with time to maturity x ≥ 0 is given 
by

P̂ (t, x) = exp

(
−

t+x∫
t

v(t, t + y)dy

)
= exp

(
−

x∫
0

v(t, y) dy

)
,

and the value at time t of the money market account is given by

β(t) = exp

( t∫
0

v(s,0) ds

)
,

hence the corresponding discounted price of the zero-coupon bond is

P(t, x) := P̂ (t, x)

β(t)
= exp

(
−

x∫
0

v(t, y) dy −
t∫

0

v(s,0) ds

)
.

Let us define the discounted price of the (fictitious) zero coupon bond associated to vε as
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Pε(t, x) = exp

(
−

x∫
0

vε(t, y) dy −
t∫

0

vε(s,0) ds

)
.

For fixed t ∈ [0, T ] and x ≥ 0, let us define the linear map

Ft,x : C([0, T ] ×R) −→ R

f �−→
x∫

0

f (t, y) dy +
t∫

0

f (s,0) ds

so that P(t, x) = exp
(−Ft,xv

)
and Pε(t, x) = exp

(−Ft,xvε

)
.

Lemma 5.10. Let (t, x) ∈ [0, T ] ×R+. The linear map Ft,x is continuous

(i) from C([0, T ]; H(R+)) to R, hence also from C([0, T ]; H(R)) to R, and
(ii) from Cp(H(R+)) to Lp(�), hence also from Cp(H(R)) to Lp(�), for every p > 0.

Proof. For any f ∈ C([0, T ]; H(R)) one has

∣∣∣∣
x∫

0

f (t, y) dy

∣∣∣∣ ≤
x∫

0

|f (t, y) − f (t,+∞)|dy + |f (t,+∞)|x

� (1 + x)‖f (t)‖H(R+) ≤ (1 + x)‖f ‖C([0,T ];H(R+))

and

∣∣∣∣
t∫

0

f (s,0) ds

∣∣∣∣ ≤
t∫

0

‖f (s)‖L∞(R+) ds � T ‖f ‖C([0,T ];H(R+)),

thus proving (i). Raising both sides of both inequalities to the power p and taking expectations 
proves (ii). �

More generally, it is easy to show that the linear map F defined as

F : C([0, T ] ×R) −→ C([0, T ] ×R)

f �−→
[
(t, x) �→

x∫
0

f (t, y) dy +
t∫

0

f (s,0) ds
]

is continuous from C([0, T ]; H(R+)) to C([0, T ] ×R), endowed with the topology of uniform 
convergence on compact sets, as well as from Cp(H(R+)) to Lp(�; C([0, T ] × I )) for every 
compact set I ⊂ R+.
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The operators Ft,x and F , being linear and continuous, are automatically of class C∞, with 
F ′(z) = F for every z in the domain of F , and higher-order derivatives equal to zero (and com-
pletely analogously for Ft,x). Given an expansion of vε around v of the type

vε − v =
m−1∑
k=1

1

k!vk εk + Rm,ε,

which can be considered as an identity in Cp(H(R)), as well as in Cp(H(R+)) by restriction, it 
follows immediately that

Ft,xvε − Ft,xv =
m−1∑
k=1

1

k!Ft,xvk εk + Ft,xRm,ε, (23)

as an identity in Lp(�). Similar considerations can be made with F in place of Ft,x . An alterna-
tive way to reach the same conclusion is to look at the composition of functions

ε �−→ vε �−→ Ft,xvε,

where ε �→ vε is of class Cm−1 from R to Cp and Ft,x is of class C∞ from Cp to Lp(�), so that 
ε �→ Ft,xvε is of class Cm−1 from R to Lp(�), and the series expansion (23) follows by Taylor’s 
theorem.

To obtain a series expansion for the difference Pε(t, x) − P(t, x) we need, however, to work 
pathwise, i.e. in L0(�), essentially because it seems difficult to find a (reasonable) Banach space 
E such that x �→ e−x is Fréchet differentiable from Lp(�) to E, so that the chain rule could 
be applied to obtain a differentiability result for the map ε �→ Pε(t, x). We proceed instead as 
follows: Taylor’s theorem yields

e−x = 1 +
m−1∑
j=1

(−1)j
xj

j ! + (−1)m

1∫
0

(1 − s)m−1

(m − 1)! e−sxxm ds

=: 1 + Jm−1(x) + rm(x)

for every x ∈R, hence

Pε(t, x) = exp
(−Ft,xvε

) = exp
(−Ft,xv

)
exp

(−Ft,x(vε − v)
)

= P(t, x)
(

1 + Jm−1
(
Ft,xvε − Ft,xv

) + rm
(
Ft,xvε − Ft,xv

))
,

so that the relative pricing error can be written as

ηε(t, x) := Pε(t, x) − P(t, x)

P (t, x)
= Jm−1

(
Ft,xvε − Ft,xv

) + rm
(
Ft,xvε − Ft,xv

)
. (24)

We are going to show that substituting the expansion of Ft,xvε − Ft,xv provided by (23), we 
obtain a representation of Pε(t, x) −P(t, x) as a polynomial in ε of degree m −1 with coefficients 
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in L0(�), plus a remainder term of higher degree. To this purpose, we first prove a simple but 
useful auxiliary result. Given a ring A, the ring of polynomials in the variable x with coefficients 
in A will be denoted by A[x]. Moreover, we shall say that a function f : [0, 1] → E, with E a 
topological vector space, is infinitesimal of order higher than α at zero if limx→0 f (x)/xα = 0.

Lemma 5.11. Let P ∈ R[x] and Q ∈ Lp(�)[x] be polynomials of degree n and m, respectively, 
and r : [0, 1] → Lp(�) a function that is infinitesimal of order higher than m at zero. Then 
there exists a polynomial R ∈ Lp/n(�)[x] of degree m and a function s : [0, 1] → Lp/n(�), 
infinitesimal of order higher than m at zero, such that

P ◦ (Q + r) = R + s.

Proof. Hölder’s inequality implies that the functions P ◦ (Q + r) and P ◦ Q take values in 
Lp/n(�), thus also P ◦ Q[x] ∈ Lp/n(�)[x]. Moreover, for any integer k ≥ 1 the binomial for-
mula yields

(Q(x) + r(x))k =
k∑

j=0

(
k

j

)
Q(x)k−j r(x)j = Q(x)k +

k∑
j=1

(
k

j

)
Q(x)k−j r(x)j ,

from which it follows, by Euclidean division, that there exist (unique) polynomials R and R1 in 
Lp/n(�)[x], such that P ◦Q(x) = R(x) +xm+1R1(x), with degR ≤ m. Therefore the function s
contains the term x �→ xm+1R1(x), which is clearly infinitesimal of order higher than m at zero, 
and terms of the type x �→ Q(x)k−j r(x)j , with 1 ≤ j ≤ k ≤ n. One has

k − j

p
+ j

p
= 1

p/k
,

hence, by Hölder’s inequality, writing Lq := Lq(�) for every q > 0 for notational convenience,∥∥Qk−j rj
∥∥

Lp/k ≤ ∥∥Qk−j
∥∥

Lp/(k−j)

∥∥rj
∥∥

Lp/j ≤ ∥∥Q
∥∥k−j

Lp

∥∥r
∥∥j

Lp .

Since Q(x) tends to zero in Lp(�) as x → 0, and r is infinitesimal of order higher than in m in 
Lp(�), one obtains that

lim
x→0

Q(x)k−j r(x)j

xm
= 0

in Lp/k(�), hence in Lp/n(�), thus showing that s is infinitesimal of order higher than m in 
Lp/n(�). �
Remark 5.12. One could prove that each term in the expansion of P ◦ (Q + r) belongs to 
Lp/n(�) also in a more direct and explicit way. In fact, if

Q(x) = a0 + a1x + a2x
2 + · · · + amxm,

then
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(Q(x) + r(x))k = (
a0 + a1x + a2x

2 + · · · + amxm + r(x)
)k

=
∑(

k

j0, . . . , jm+1

)
a

j0
0 a

j1
1 xj1 · · ·ajm

m xmjmr(x)jm+1 ,

where the sum is taken over all positive integers j0, . . . jm+1 such that j0 + · · · + jm+1 = k. This 
implies

j0

p
+ · · · + jm+1

p
= 1

p/k
,

hence, by Hölder’s inequality,∥∥a
j0
0 · · ·ajm

m r(x)jm+1
∥∥

Lp/k ≤ ∥∥a
j0
0

∥∥
Lj0/p · · ·∥∥a

jm
m

∥∥
Ljm/p

∥∥r(x)jm+1
∥∥

Ljm+1/p

= ∥∥a0
∥∥j0

Lp · · ·∥∥am

∥∥jm

Lp

∥∥r(x)
∥∥jm+1

Lp .

This proves that every term in the expansion of P(Q(x) + r(x)) belongs to Lp/n(�). A com-
pletely analogous reasoning shows that P ◦ Q(x) ∈ Lp/n(�)[x].

Let us rewrite (23) as

Ft,xvε − Ft,xv = Qm−1(ε) + Ft,xRm,ε, (25)

where

Qm−1(ε) :=
m−1∑
k=1

1

k!Ft,xvk εk

is a polynomial of degree m − 1 with coefficients in Lp(�).

Proposition 5.13. Let p ∈ [1, ∞[. Assume that u0 ∈ Lp(�; D(A2m)) and

E

( ∞∑
k=1

T∫
0

∥∥σk(t, ·)
∥∥2

D(A2m
0 )

dt

)p

< ∞.

The relative pricing error ηε(t, x) at time t ∈ [0, T ] and time to maturity x ∈ R+ admits an 
expansion of the type

ηε(t, x) =
m−1∑
j=1

�jε
j + ρ(ε), (26)

where the coefficients �1, . . . , �m−1 belong to Lp/(m−1)(�), and the remainder ρ : [0, 1] →
L0(�) is such that

lim ρ(ε)/εm−1 = 0

ε→0
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in probability.

Proof. Let (t, x) ∈ [0, T ] ×R+. It follows from (24) and (25) that

ηε(t, x) = Jm−1(Qm−1(ε) + Ft,xRm,ε) + rm(Qm−1(ε) + Ft,xRm,ε), (27)

where Rm,ε/ε
m−1 tends to zero in Cp(H(R)) as ε → 0, hence, by Lemma 5.10, Ft,xRm,ε/ε

m−1

tends to zero in Lp(�). Lemma 5.11 then yields

Jm−1(Qm−1(ε) + Ft,xRm,ε) =
m−1∑
j=1

�jε
j + ρ1(ε),

with �j ∈ Lp/(m−1)(�) for every j = 1, . . . , m − 1 and ρ1 : [0, 1] → Lp/(m−1)(�) is infinitesi-
mal of order higher than m − 1 at zero. To conclude the proof, it remains to show that the second 
term on the right-hand side of (27) tends to zero in probability faster than εm−1 as ε → 0. Note 
that, for any s ∈ [0, 1] and x ∈R, one has −sx ≤ |s(−x)| = s|x| ≤ |x|, hence

|rm(x)| ≤ 1

(m − 1)! |x|m
1∫

0

e−sx ds ≤ 1

(m − 1)! |x|me|x|,

which in turn yields

rm
(
Qm−1(ε) + Ft,xRm,ε

)
�m

∣∣Qm−1(ε) + Ft,xRm,ε

∣∣m exp
(|Qm−1(ε) + Ft,xRm,ε|

)
.

Since the polynomial Qm−1 does not have term of order zero, a simple variant of Lemma 5.11
shows that

lim
ε→0

∣∣Qm−1(ε) + Ft,xRm,ε

∣∣m
εm−1 = 0

in Lp/m(�), in particular in probability. Moreover, since Qm−1(ε) + Ft,xRm,ε tends to zero in 
Lp(�), hence in probability, the continuous mapping theorem implies that

lim
ε→0

exp
(|Qm−1(ε) + Ft,xRm,ε|

) = 1

in probability, thus also that

lim
ε→0

rm
(
Qm−1(ε) + Ft,xRm,ε

)
εm−1 = 0

in probability. �
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Remark 5.14. An expression for the coefficients �j , j = 1, . . . , m − 1, in (26) could be given in 
terms of the Faà di Bruno formula. The first three of them are

�1 = −Ft,xv1,

�2 = −1

2
Ft,xv2 + 1

2
(Ft,xv1)

2,

�3 = − 1

3!Ft,xv3 + 1

2
(Ft,xv1)(Ft,xv2) − 1

3! (Ft,xv1)
3.

We shall now discuss conditions under which the order of convergence to zero of the re-
mainder term ρ can be established in topologies stronger than the topology of convergence in 
probability. In particular, we shall assume that

u0 ∈ Lmp(�;D(A2m
0 )), E

( ∞∑
k=1

T∫
0

∥∥σk(t, ·)
∥∥2

D(A2m
0 )

dt

)mp

< ∞. (28)

Then v and vε belong to Cmp(H(R)), which implies that v1, . . . , vm−1 and Rm,ε in (23) belong 
to Cmp(H(R)). This in turn implies, in complete analogy to the proof of Proposition 5.13, that

Jm−1(Ft,xvε − Ft,xv) =
m−1∑
j=1

�jε
j + ρ1(ε),

with �j ∈ Lp for every j = 1, . . . , m − 1 and ρ1(ε)/ε
m−1 converging to zero as ε → 0. Esti-

mating the second term on the right-hand side of (24) requires further assumptions. For instance, 
denoting the (Hölder) conjugate exponent to p by p′, one has∥∥rm

(
Ft,xvε − Ft,xv

)∥∥
L1(�)

≤
1∫

0

(1 − s)m−1

(m − 1)!
∥∥exp

(−s(Ft,xvε − Ft,xv)
)∥∥

Lp′
(�)

∥∥(Ft,xvε − Ft,xv)m
∥∥

Lp(�)
ds,

where, as already seen,

(Ft,xvε − Ft,xv)m =
(m−1∑

k=1

1

k!Ft,xvk εk + Ft,xRm,ε

)m

tends to zero in Lp(�) faster than εm−1 as ε → 0. Another application of Hölder’s inequality 
yields

∥∥exp
(−s(Ft,xvε − Ft,xv)

)∥∥
Lp′

(�)
=

(
E exp

(−p′s(Ft,xvε − Ft,xv)
))1/p′

≤
(
E exp

(−p′(Ft,xvε − Ft,xv)
))1/p′

∀s ∈ [0,1],
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from which it follows that if Eexp
(−p′(Ft,xvε − Ft,xv)

)
is bounded for ε in a (right) neighbor-

hood of zero, then

lim
ε→0

∥∥rm
(
Ft,xvε − Ft,xv

)∥∥
L1(�)

εm−1 = 0.

Such uniform bounds of exponential moments, although quite hard to establish in general, can 
be obtained for the Gaussian HJM model, i.e. assuming that the volatility coefficients (σk) are 
deterministic.

Proposition 5.15. Assume that u0 and (σk) are non-random with u0 ∈ D(A2m
0 ) and

∞∑
k=1

T∫
0

∥∥σk(t, ·)
∥∥2

D(A2m
0 )

< ∞.

Then, for any (t, x) ∈ [0, T ] ×R+, the relative pricing error ηε(t, x) admits an expansion of the 
type

ηε(t, x) =
m−1∑
j=1

�jε
j + ρ(ε),

where the coefficients �1, . . . , �m−1 belong to Lp(�), and the remainder ρ : [0, 1] → L1(�) is 
such that

lim
ε→0

ρ(ε)

εm−1 = 0

in L1(�).

Proof. Note that the assumption (28) is trivially satisfied. We are going to prove that, for any 
p ≥ 1, E exp

(−p′(Ft,xvε − Ft,xv)
)

is bounded with respect to ε sufficiently small, where, as 
before, p′ is the Hölder conjugate of p. To this purpose, let us first show that Ft,xv and Ft,xvε

are Gaussian random variables. The argument being the same, we consider only Ft,xv, for which 
we can write

Ft,xv = F 1
t,xv + F 2

t,xv, F 1
t,xv :=

x∫
0

v(t, y) dy, F 2
t,xv :=

t∫
0

v(s,0) ds.

Since v(t) is Gaussian with values in H(R), and the map h �→ ∫ x

0 h(y) ds is linear and continuous 
from H(R+) to R, F 1

t,xv is a Gaussian random variable. Moreover, as v(s, 0) = δv(s), with δ
the Dirac measure at zero, which is a linear and continuous map from H(R) to R, we deduce 
that s �→ v(s, 0) is a mean-square continuous R-valued Gaussian process. Therefore, elementary 
properties of Gaussian processes (see, e.g., [8, p. 124]) imply that F 2

t,xv is a Gaussian random 
variable. The Cauchy-Schwarz inequality yields
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E exp
(−p′(Ft,xvε − Ft,xv)

) ≤
(
E exp

(−2p′Ft,xvε

))1/2 (
E exp

(
2p′Ft,xv

))1/2
,

where both terms on the right-hand side are finite because Gaussian random variables admit 
finite exponential moments. Moreover, Ft,xvε converges to Ft,xv in Lp(�) as ε → 0, hence also 
in law. Setting

m := EFt,xv, mε := EFt,xvε,

ς2 := E(Ft,xv − m)2, ς2
ε := E(Ft,xvε − mε)

2,

Gaussianity implies that mε → m and ςε → ς as ε → 0. Therefore the well-known expression 
for the moment generating function of a Gaussian law implies

E exp
(−2p′Ft,xvε

) ≤ exp
(

2(p′)2ς2
ε − 2p′mε

)
,

where the right-hand side is bounded for ε in a right neighborhood of zero. �
Remarks 5.16. (i) Let L∞−(�) be the Fréchet space defined as the intersection of all Lp(�)

spaces with p ∈ [1, ∞[. Since assumption (28) is satisfied for every p > 0, a simple variation of 
the proof shows that �1, . . . , �m−1 belong to L∞−(�), as well as that ρ(ε)/εm−1 converges to 
zero in L∞−(�) as ε → 0.
(ii) One could also try to prove directly that the law of v is Gaussian on C([0, T ]; H(R)), from 
which it would follow directly that Ft,xv is also Gaussian thereon, because Ft,x is linear and 
bounded on that space.

An alternative estimate on the pricing error can be obtained under a positivity assumption.

Proposition 5.17. Assume that u0 and (σk) satisfy (28). If u ≥ 0 and uε ≥ 0, then, for any (t, x) ∈
[0, T ] ×R+, there exist �j ∈ Lp(�), j = 1, . . . , m − 1, and ρ1, ρ2 : [0, 1] → Lp(�) such that

Pε(t, x) − P(t, x) = P(t, x)

m−1∑
j=1

�jε
j + P(t, x)ρ1(ε) + ρ2(ε)

with limε→0 ρ1(ε)/ε
m−1 = limε→0 ρ2(ε)/ε

m−1 = 0 in Lp(�).

Proof. Let (t, x) ∈ [0, T ] ×R+. It follows from (24) that

Pε(t, x) − P(t, x) = P(t, x)Jm−1
(
Ft,xvε − Ft,xv

) + P(t, x) rm
(
Ft,xvε − Ft,xv

)
,

where, as in the proof of Proposition 5.13,

Jm−1
(
Ft,xvε − Ft,xv

) =
m−1∑
j=1

�jε
j + ρ1(ε),

with limε→0 ρ1(ε)/ε
m−1 = 0 in Lp(�). Moreover, writing
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P(t, x) rm
(
Ft,xvε − Ft,xv

)
= (−1)m

1∫
0

(1 − s)m−1

(m − 1)! exp
(−sFt,xvε − (1 − s)Ft,xv

)
(Ft,xvε − Ft,xv)m ds,

taking into account that v ≥ 0 and vε ≥ 0, and that Ft,x is positivity preserving, one has

exp
(−sFt,xvε − (1 − s)Ft,xv

) ≤ 1 ∀s ∈ [0,1].

This in turn implies∥∥P(t, x) rm
(
Ft,xvε − Ft,xv

)∥∥
Lp(�)

�
∥∥(Ft,xvε − Ft,xv)m

∥∥
Lp(�)

,

where the right hand side converges to zero faster than εm−1. �
The positivity of forward rates is a natural assumption from the financial perspective, which 

is, however, not guaranteed by the general HJM model (an example is the Gaussian HJM model). 
The positivity of forward rates, seen as mild solutions to the Musiela SPDE, is discussed, e.g., 
in [11,15], and in [17,21] in the more general context of positivity of mild solutions to stochastic 
evolution equations.

Without knowing a priori that u and uε are positive, expansions of the pricing errors that hold 
on the set

Aε := {
ω ∈ � : u(ω, ·), uε(ω, ·) ≥ 0 on [0, t] × [0, x]}

can be obtained. In fact, as in the proof of the previous proposition, one has

Pε(t, x) − P(t, x) = P(t, x)

m−1∑
j=1

�jε
j + P(t, x)ρ1(ε) + P(t, x) rm

(
Ft,xvε − Ft,xv

)
,

hence, multiplying both sides by 1Aε , setting

�̃j := 1Aε�j , ρ̃1(ε) := 1Aερ1(ε), ρ̃2(ε) := 1Aερ2(ε),

and noting that

ρ̃2(ε) := ∥∥1AεP (t, x) rm
(
Ft,xvε − Ft,xv

)∥∥
Lp(�)

�
∥∥(Ft,xvε − Ft,xv)m

∥∥
Lp(�)

,

where the right-hand side converges to zero faster than εm−1, one finally concludes that

1Aε

(
Pε(t, x) − P(t, x)

) = P(t, x)

m−1∑
j=1

�̃j ε
j + P(t, x)ρ̃1(ε) + ρ̃2(ε)

where �̃j are random variables in Lp(�) and ρ̃1, ρ̃2 converge to zero in Lp(�) faster than εm−1.
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